Mantle-Helium Distribution in Western Anatolia, Turkey: Relationship to Heat Distribution, Active Extension and Volcanism

N. Güleç¹, D. R. Hilton²

¹Department of Geol. Eng., Middle East Technical University, 06531, Ankara, Turkey
²Fluids and Volatiles Laboratory, Geosciences Research Division, Scripps Institution of Oceanography, UCSD, La Jolla, California 92093-0244, USA

Western Anatolia comprises one of the world’s best known extensional terrains and is characterized by the presence of several moderate- to high-enthalpy geothermal fields located along the boundary faults of the major grabens. Helium-isotope compositions of geothermal fluids reflect mixing between mantle ($^{3}\text{He}/^{4}\text{He} = 8R_{A}$ where $R_{A} =$ air $^{3}\text{He}/^{4}\text{He}$; [1]) and crustal ($^{3}\text{He}/^{4}\text{He} < 0.1R_{A}$; [2]) components, the former ranging up to 45 % of the total helium in a given sample. There is a general positive correlation between the distribution of heat and helium in western Anatolia, suggesting similar mechanisms for their transfer to the surface. The fact that the mantle-He contribution in the vicinity of the Quaternary Kula volcanics is amongst the highest reported for western Anatolia ($2.8R_{A}$) further suggests that this transfer probably occurs in association with mantle melting accompanying current extension in the region. The spatial association of most of the high-enthalpy fields with the young alkaline volcanics (except in the Büyük Menderes Graben; BMG) is in support of this argument. On the other hand, the observations that i) there is a lack of volcanic exposures along the BMG (except at its western and southeastern terminations) where the highest values are recorded for both heat and helium, and ii) relatively high mantle-He contributions occur in areas of not only the young alkaline, but also the old calc-alkaline volcanics, imply that the transfer of heat and helium may also be accomplished via plutonic activity. In this respect, the large range observed in the helium-isotope compositions may be linked with differential (local) extension rates and associated melt generation in the respective areas. This suggestion can be substantiated with a better regional coverage of He-isotope data which, unlike heat flow data, are currently restricted to point localities. Nevertheless, the present study suggests that the eastern segment of the BMG is a target locality for further studies from various disciplines concerned with active tectonics.

References
