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1 Introduction 

Accurate real-time tracking of orientation or attitude of rigid bodies has wide applications in robotics, 
aerospace, on-land and underwater vehicles, automotive industry, and virtual reality. A quite recent 
application in geophysics is the analysis of the attitude effect of geophysical sensors such as coil 
arrays or magnetometers attached to mobile measuring platforms e.g. helicopters and fixed wing 
airplanes and the correction with respect to the Earth’s reference coordinate frame (Reid etal, 2003, 
Yin and Fraser, 2004). Another field of application is wireline logging with a borehole tool. While 
measuring, the tool spins about its vertical body axis due to the torsion force of the logging cable, 
which results in a disorientation of geophysical sensors. 

In the borehole industry, it is essential to accurately monitor and guide the direction of the drill bit. It is 
also necessary for an oil rig to log the location of its boreholes at a regular frequency such that the oil 
rig can be properly monitored. To determine the location of a drill bit in a borehole, it is necessary to 
know the position and the attitude, which includes the vertical orientation and the North direction. 

In prior art systems, a magnetometer is used to determine the magnetic field direction from which the 
direction of North is approximated. Triple component magnetometers were widely used to sense the 
tool rotation during a log run. However orientation via magnetometers is subject to restrictions. The 
employing of magnetometers in boreholes drilled into strongly magnetized formations such as oceanic 
crust, volcanoes and ore deposits, make it very difficult to utilize the Earth’s magnetic field as a 
reference (Steveling et al, 2003). First, these systems must make corrections for magnetic 
interference and use of magnetic materials for the drill pipe. Second, systems that rely only on 
magnetometers to determine North can suffer accuracy degradation due to the Earth's magnetic field 
variations. Third, a magnetometer alone cannot give an unequivocal measurement of a set of sensor 
attitude. Measurements made with such a sensor define the angle between the Earth’s magnetic field 
and a particular axis of the sensor. However, this axis can lie anywhere on the surface of a cone of 
semi-angle equal to that angle about the magnetic vector. Hence, an additional measurement is 
required to determine attitude with respect to another fixed reference frame. 

In order to determine the direction of a spinning borehole tool another type of sensor technology 
must be utilised to provide orientation that is independent from the Earth’s magnetic field as a 
reference (Galliot et al, 2004, Stoll and Leven, 2002). 

The problem to be solved consists of a way to sense the attitude of a borehole tool, which are free to 
rotate about any direction. A good compromise between accuracy and sensor size are the fibre optical 
gyros. These devices measure the turning rate about the sensor axis in the tool frame. In this paper an 
algorithm is presented that approaches the attitude determination based on this discrete data. 

 

2 Principle of Fibre Optical Gyro (FOG) 

Gyroscopes are used in various applications to sense the angular rate of turn about some defined 
axis. The most basic and the original form of gyroscopes make use of the inertial properties of a 
wheel, or rotor, spinning at high speed. The wheel tends to maintain the direction of its spinning axis in 
space due to conservation of the angular momentum vector. These devices are susceptible to 
damage from shock and vibration, exhibit cross-axis acceleration sensitivity and, for the lower cost 
versions, have reliability problems. 

Another type is the vibratory gyroscope. The basic principle of operation of such sensors is that the 
vibratory motion of part of the instrument creates an oscillatory linear velocity. If the sensor is rotated 
about an axis orthogonal to this velocity, a Coriolis acceleration is induced. The acceleration modifies 
the motion of the vibrating element which is an indication of the magnitude of the applied rotation. 
However, this type of sensor tends to produce biases in the region of 1°/s. 
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Optical gyroscopes use an interferometer to sense angular motion. An optical gyroscope, laser or 
fibre, measures the interference pattern generated by two light beams, traveling in opposite directions 
within a mirrored ring or fibre loop, in order to detect very small changes in motion. This type of 
gyroscope can be subdivided into fibre optical gyro (FOG), ring laser gyro (RLG), and ring resonator 
gyro (PARR). 

In order to keep track on the orientation of the geophysical sensors the utilisation of fibre optical 
gyroscopes are now common in navigation and replace prior art systems like mechanical gyros. 
Important attributes of this new technology are no moving parts, high reliability, stable performance 
and low costs. Many of its components are based on proven technology from the fiber optical 
telecommunications industry. Using optical gyros, inertial navigation is accomplished by integrating the 
output of a set of angular rate sensors to compute the attitude. 

In figure 1 a FOG manufactured by LITEF is shown exemplary. The gyro operates at an optical 
wavelength of 820 nanometers, with a 110 meter coil of elliptical-core polarization maintaining fiber. 
The low coherence reduces unwanted interference between waves reflected from the fusion splices 
used to join the components.  

  
Fig. 1: Example of the �FORS -family (LITEF, Freiburg) (here �FORS-6U) 

 

3 Attitude Computation 

Inertial orientation tracking of borehole tools is based upon the same methods and algorithm as 
those used for aircrafts, ships, and missiles. There is a large quantity of technical literature that 
describes the fundamentals of inertial navigation technology in great detail, e.g., Grewal et al. (2001), 
v. Hinüber (1993), Savage (1998a, b), Stovall (1997). If angular rates of a tool are measured 
constantly with depth, the orientation of the sensors of the tool with respect to inertial space can be 
determined by applying a suitable coordinate transformation. 

A transformation from one coordinate frame to another can be carried out as three successive 
rotations about different axes. The transformation matrix is given by the product of these three 
separate transformations as follows: 

123 CCCCn
b ���  (1) 

Various mathematical representations can be used to define the attitude of a body with respect to a 
coordinate reference frame. One of the most common ways of parameterizing the transformation 
matrix is by use of direction cosine matrix (DCM). Other methods of describing rotations are the use of 
Euler Angles and Quaternions. 

The DCM is a 3x3 matrix, the columns of which represent unit vectors in body axes projected along 
the reference axes. Matrix  describes the transformation from coordinate frame “b” to the frame “n” 
and is written here in component form as follows: 

n
bC
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The element in the ith row and the jth column represent the cosine of the angle between the ith axis of 
the reference frame “n” and the jth axis of the body frame “b”. 

When designing a navigation system it is necessary to relate the information from the sensors to a 
navigation coordinate. The coordinate choice for borehole applications is a geographic or navigation 
frame “n” with axes {N, E, D}, (North, East and Down). The inertial measurement unit is mounted on 
the borehole tool constituting a new frame. This is called the body frame “b”, and has axes {X, Y, Z}. 
This frame will be in rotation with respect to the geographic frame. The velocity of this rotation is 
measured by three orthogonal gyros. The transformation matrix that relates “b” and “n” coordinate 
frames propagates with time in accordance with the following equation: 

b
nb
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nb�  is the skew symmetric matrix formed from the elements of the vector , which 

represents the turn rate of the body between the i
� �Tzyx

n
b  ,,�

th-frame and the (i+1)th-frame as measured by the 
gyroscopes in the body frame. In real time applications the integration is implemented with the 
following approximation 

� � � � � �tAtCttC n
b

n
b ����  (4) 

where  is the DCM which relates the b-frame at time t to the b-frame at time . For small 

angle rotations,  may be written as follows: 

� �tA tt ��
� �tA

� � � ����� ItA  (5) 

where I is the 3×3 identity matrix and 
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in which ��, �� and �� are small rotation angles through which the body-frame has rotated over the 
time interval �t about its yaw, pitch and roll axes respectively. If the limit �t approaches zero, small 
angle approximations are valid and the order of the rotation becomes unimportant. 

Hence, the minimum sampling time of the gyros is important for obtaining the transformation matrix 
with reasonable accuracy. This interval will be a function of the severity of manoeuvres expected from 
the borehole tool. In many applications the rotation velocity expected is usually less than 25 
degrees/sec. With a sampling time of 100 Hz the maximum angle variation will be less than 0.25 
degree satisfying the small angle approximation. Rotations with faster dynamics will require smaller 
sampling time to compute the transformation matrix appropriately. 

In order to update the DCM , it is necessary to solve a matrix differential equation (3). Over a 
single computer cycle, from time t

n
bC

k to tk+1, the solution of the equation may be written as: 

�
�

����

1

exp1

k

k

t

t
kk dtCC  (7) 

Provided that the orientation of the turn rate vector  remains fixed in space over the update interval, 
we may define: 
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and 

� � kkkk ACCC ������ �exp1  (9) 

Where Ck represents the direction cosine matrix which relates body to reference axes at the kth 
computer cycle, and Ak the direction cosine matrix which transforms a vector from body co-ordinates 
at the kth computer cycle to body co-ordinates at the (k+1)th computer cycle. 

The variable � is an angle vector with direction and magnitude such that a rotation of the body frame 
about � through an angle equal to the magnitude of � will rotate the body frame from its orientation at 
computer cycle k to its position at the computer cycle k+1. The components of � are denoted by �x, 
�y, and �z and its magnitude given by: 
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Expanding the matrix exponential function in a power series gives: 
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and which may be written as follows: 
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Equation (17) is input in equation (9) that updates the frame at time t to the frame at time t+�t. To 
compute the attitude of the tool, first the measured rotation rates are input in equation 17. Then, 
beginning with C0 = I the rotation matrices Ck+1 for each computer cycle k+1 are successively 
computed by equation (9). The tool attitude n

kr
�

 in the external frame at the kth cycle results to  
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4 Attitude Computation allied to the Göttingen Borehole Magnetometer (GBM) 

The Göttingen Borehole Magnetometer (GBM) contains a triple of �FORS-36M sensors, which are 
attached rigidly to the borehole tool. The rotation axes of the sensors are aligned with the body axes of 
the tool, and thereby sense the rotation rate about the vertical axis and the tilting movement about the 
two horizontal axes. Angular rates are output with a sample rate of 1 second. The salient 
specifications of the �FORS-36m are the maximum input rotation rate of ±720°/s that allows sensing a 
maximum rotation rate of 2 revolutions per second with a resolution of 9·10-5 °. Moreover, the 
dimensions of the sensor (53mm x 58mm x 19mm) are small enough to fit to the inner diameter of 
65mm of the GBM. This is important to reduce the overall diameter of the tool and make it applicable 
in narrower boreholes. The bias drift is �6�/h (1�) and is reduced to <3°/h at working temperature of 30 
°C to 50 °C. The maximum operating temperature range is -40 °C to +75 °C. 

To check the performance of the attitude computation, the GBM was brought to the Gauss Haus at the 
Geophysical Institute of the University of Göttingen where it was fixed to the ceiling and hung vertically 
down. Then it was exposed to different kinds of movements like tilting and rotation about its vertical 
axis or combined movements. This test is visualized in two video clips, video 1 and video 2. Here, the 
tool attitude with the corresponding turning rate and the magnetic field data are shown in three 
components. The maximum rotation rate was 150°/s. In this case the rotation angles are no longer 
small, which resulted in an erroneous representation of the attitude of the tool. Figure 2 displays the 
movement of the GBM with respect to the {N, E, D}, (North, East and Down) coordinate frame 

Figure 2 
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