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Abstract  
 
The transient electromagnetic response of  an inductive loop source over a half-space with 
fractal characteristics is simulated. The conductivity of the ground has a spatial distribution, 
which is described by a roughness parameter. The roughness can be related to the fractal 
dimension and controls the transient decay of the signal. Asymptotic limits are observed for 
the early and late time behaviour. 
The work is based on a paper by Everett (2009), which has been reviewed and the aspect of 
asymptotic limits in time has been further investigated. Contrary to that paper, here a 
relationship between roughness and the electromagnetic decay at early and late time has been 
deduced. The transient decay for normal diffusion is t-5/2 and for anomalous diffusion the 
decay is slower. The new power law for anomalous diffusion has been proven by theoretical 
analysis and has been verified by numerical experiments. 
The numerical evaluation of the inverse Laplace transform with the method of the fast Hankel 
transform are excellent in numerical accuracy and the method with the Gaver-Stehfest 
algorithm is not sufficient to estimate the power law decay at late times. 
 
 
Anomalous Diffusion 
 
The concept of anomalous diffusion is a useful approach for the description of diffusion 
process and transport dynamics in complex systems. The fractional equations are derived 
asymptotically from basic random walk models and become a complementary tool for 
handling non-exponential relaxation patterns. 
For transient electromagnetic diffusion Everett starts this concept with a generalized Ohm’s 
law (Everett 2009, Weiss and Everett 2007) 
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the parameter ��~�t-� describes the generalized electrical conductivity and is appropriate for 
the anomalous diffusion coefficient. The Ohm’s law becomes a convolution between the 
generalized conductivity and the electric field E. The roughness parameter can vary 0 � � � 1. 
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After applying Ampere‘s and Faraday‘s law to the generalized current density, we get the 
fractional diffusion equation 
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where now the fractional derivative or Riemann-Louiville operator is introduced (Metzler and 
Klafter 2000) 
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and � is the Gamma function which serves as normalization constant. 
The fractional diffusion equation will be solved in the Laplace domain and the transformation 
of the operator yield to 
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with the complex Laplace variable s=i� (Abramowitz & Stegun 1964). 
The fractional diffusion equation becomes now a simple expression 
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This differential equation can be solved straightforward with the standard methods as used for 

the electromagnetic 1-D formulation in a layered medium. 

 

Electromagnetic responese of a loop over rough half-space 
 
Everett (2009) has used a separate horizontal loop configuration for transmitter and receiver 

as it is typically used for TEM. The transmitter loops usually a square loop can be represented 

by a circular loop whith equivalent area. For the separate loop configuration the time 

derivative of the vertical magnetic field is measured outside the transmitter loop. 

In frequency domain the vertical magnetic field is presentated as Hankel Integrals 
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The integration is over the spatial wavenumber � and I is the current in the transmiter,  a the 

transmitter loop radius, r the distance to the receiver point, J0 and J1 are Bessel functions of 

order 0 and 1 and k� the fractional wavenumber. The integral can be solved analytically for an 

infinitessimally magnetic dipole, therefore the limit of the first order Bessel function for small 

radius is taken into account (Abramowitz & Stegun 9.1.10) 
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The response of a vertical magnetic dipole in frequency domain over a rough conductive 
media is 
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with the fractional induction number u  =  k� r = (s1-� �0 �)1/2 r. 
 
 
Asymptotic limits in frequency and time domain 
 
For normal diffusion with roughness equal zero the transient response can be also given in 
analytical expression but for a general fractional induction number with the roughness 
parameter � the transformation to time domain has to be done by numerical techniques. Only 
the asymptotic limits for the high and low frequency limit can be calculated in closed form. 
For high frequency and early time we get 
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The low frequency can be developed in a series 
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The first 3 terms are important for the late time behavior 
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In time domain the first term is a �-function without influence on late time decay. The second 
term is responsible for the late time behavior in a rough medium 
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The third term describes the classical -5/2 decay response in a non-fractional medium and for 
a fractional medium this term decays faster than the previous second term. 
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The late time response for the magnetic field can be summarized  
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The cause for the heavy tailed decay response in rough geological media can be explained by 
the additive second term which yield to a continuous transition from non-fractional to 
fractional diffusion as is shown in figure 1 and 2. 
 
 
Numerical inverse Laplace transform  
 
Numerical methods are applied for the transformation to time domain. Since the transient is a 
real and causal function, the inverse Fourier or Laplace transform can be calculated by a sine-
transform. 
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In this expression I have already considered that the current step in the transmitter decribed by 
1/i� and the time derivative of the receiver coil by a multiplication with i� cancel each other. 
Since for diffusion processes the kernel function is a smooth function, the technique of the 
Fast Hankel Transform can be applied. The sine function is experessed by Bessel function 
with fractional order ½  
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The fast Hankel transform is a well know technique for calculating the transient response, I 
used 250 filter coefficients, 15 /decade, calculated with the program by Christensen (1990). 
 
Everett (2009) has chosen the Gaver-Stehfest algorthim for his investigation. This method is 
also good for diffusion processes and has been succesfully applied. It is a favourized method 
in hydrology, because it needs only real arithmetic and the Laplace variable s is considered as 
a real variable. Knight and Raiche (1982) introduced this technique to the electromagnetic 
community. Stehfest (1970) published an Algol routine, which can be straight forward 
translated to other computer languages and Everett (2009) has tabled the coefficients for 
several total number of coefficients. 
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Figure 1: Transient loop-loop response with early and late time approximation over half-
space with different roughness in conductivity, the offset is 100 m, � = 0.1 S/m.
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The disadvantage of the Gaver-Stehfest algorithm is that the numerical accurracy cannot 
generally be increased by increasing the number of coeffcients. The accuracy is depending on 
the accurracy in number of digits of the kernel function and the number of digits of the 
maschine precision. Stehfest recommended 8 coefficients for single precision and 18 
coeffcients for double precision. Everett used 18 coefficients. In my experiments I have found 
out that 12 is an optimal number for electromagnetic application. 

 
 
 

 

 
Figure 2: Numerical evaluation of the exponent in the transient decay and theoretical 
asymptotic limit for different roughness 
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Results 
 
For the numerical experiment I used the same model as Everett, beside that here a vertical 
magnetic dipole instead of  a horizontal circular loop is used. The base conductivity of  the 
half-space is 0.1 S/m with combination of various roughness parameter � has been applied. 
Figure 1 shows the transient as induced voltage due to an step response of the transmitter 
current for different roughness paramters. The large time range has been chosen to 
demonstrate the early and late time behavior in comparison with the asymptotic limits. For 
real measurements the time range will be much smaller. All transients - shown here - are 
calculated with the fast Hankel transform. As reference the transient of homogenous half-
space with normal diffusion is also shown with grey lines. For separate loop configuration the 
transient shows a sign change. The negative values are shown with dashed lines and positive 
with solid lines. The asymptotic limits agree very well with theoretical prediced limits at eary 
and late times shown here as straight lines. The early time behaviour is for practical pupose of 
minor relevance, because in real meausrements the early time is influenced by system 
response of the system as the ramp for the current step off. So that in the data the straight line 
will not be visible. But the late time behaviour will be visible if the late time data can be 
measured and the data quatlity is sufficient.  
To analyze how accurate the power law decay can be estimated from the calculated transients 
especialle for low roughness numbers, the transients are calculated up to extrem late times and 
the power law is determined by taking the numerical derivative d ln H(t) / d ln t. The result is 
shown in figure 2.  

 
Figure 3: Numerical evaluation of the exponent in the transient decay and theoretical 
asymptotic limit for different roughness calculated with Gaver-Stehfest alogorithm 
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The graphs show the exellent accuracy of the fast Hankel transform, even for small roughness 
numbers, and indicates the smooth transition, when the roughness approaches zero. The 
influence of the anomalous diffusion moves to later times for decreasing roughness. 
For very low roughness there will be a time range showing almost normal decay t-5/2 and then 
goint to the predicted power law decay at extrem late time – approaching infinity. Responsible 
for this behavior is the second term of the low frequency approximation which is added. 
 
The Gaver-Stehfest algorithm is not sufficient to estimate the power law decay. I tried 
different ways of programming, e.g to consider numerical accuracy the Laplace transform is 
done before the Hankel transform over the spatial wave number as recommended by Knight 
and Raiche (1982). The best results are shown in figure 3, achieved with 12 coefficients and 
using the analytical response for a vertical magnetic dipole in Lapace domain. Notice that the 
time range is shorter but still 3 decades more than in Everett’s paper. 
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