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Abstract

Thin sheet approximation of Earth’s conductive structures made it possible to quantitatively estimate effects of
lateral conductivity variations in the Earth long before full 3-D electromagnetic modeling was practicable. The
thin sheet approach is still useful when induction data with limited vertical resolution are to be interpreted on a
surface. It especially refers to collections of long period induction arrows across large areas and geological units.
For this purpose, inverse procedures, both linearized and stochatic, for a conductance distribution in a thin sheet have
been suggested recently. We present a stochastic Monte Carlo inversion of geomagnetic induction data based on
the bayesian formulation of the inverse problem. An example of the inversion of practical induction data from the
transition zone between the Bohemian Massif and the West Carpathians suggests that an SW-NE anomalous induction
zone observed above the eastern slopes of the Bohemian Massif admits explanation in terms of a phantom effect due
to the superposition of fields of the strong SE-NW Carpathian conductivity anomaly to the east with NW-SE to W-E
trending conductivity zones to the west that conform with the fault pattern of the eastern Bohemian Massif.

1 Introduction

Regional geoelectrical information on the contact zone between the Variscean Bohemian Massif and the Alpine West-
ern Carpathians is mainly available from long-period geomagnetic transfer functions. Magnetotelluric data and broad-
band electromagnetic induction experiments are scarce in the region, mainly because of high level of the civilization
noise all over the area, and also because of the lack of instrumentation in the past. Only recently, magnetotelluric
experiments have been carried out in some subareas of the region, mainly for commercial targets (e.g., Vozár, 2005).

Long-period geomagnetic induction data covering a period band of about one decade in the range of thousands
of seconds cannot provide detailed geoelectrical information on structures beneath the region of interest. They are,
however, suitable characteristics to be used to model large-scale horizontal conductivity distribution in the Earth’s
crust or lithosphere, and thus to indicate regional lateral conductivity anomalies that are responsible for the observed
induction pattern over the area under study. With data at periods of the order of thousands of seconds, with penetration
depths starting at several tens of km for standard conditions of the continental lithosphere, a quasi 3-D thin sheet
approximation of crustal conductivity structures is a reasonable induction model (e.g., Vasseur and Weidelt, 1977).
The thin sheet approximation largely reduces the computational demands of the modeling procedure as compared with
a full 3-D treatment and, moreover, bypasses some intrinsic difficulties of dealing with the geomagnetic induction data
alone, especially their low sensitivity with respect to the normal layered background of the model.

Recently, two methods of inversion of geomagnetic induction data for conductances in a thin sheet have been
developed, one based on the non-linear conjugate gradient technique (Wang and Lilley, 2002) and the other on a
Bayesian approach with Markov chain Monte Carlo (MCMC) method used for a stochastic sampling process (Grandis,
2002). In this contribution, we are using the latter approach to analyze conductance distributions which are compatible
with the geomagnetic induction data in the West Carpathians region and at its transition to the Bohemian Massif on
the territories of the Czech Republic, Slovakia and Poland.

More specifically, the data base of this study are induction response data at 150 field stations that were pub-
lished earlier (Praus and Pěčová, 1991) covering the Bohemian Massif (BM), the Brunovistulicum (BV), and the West
Carpathian region (WCP) and re-analyzed in (Pěčová and Praus, 1996). Spatial distribution of both the in-phase and
the out-of phase induction vectors, contour maps of individual transfer functions (TF) and contour maps of anomalous
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Figure 1: Geological scheme of the region of Central Europe relevant to our modeling study. The dashed-line rectangle
shows the region in which the inversion for a laterally variable conductance distribution in a thin sheet is carried out.

vertical field that were generated from the TF’s by the hypothetical field of different polarizations and systems of in-
ternal anomalous currents indicate the existence of two zones of anomalous induction at the eastern margin of the BM
and near the boundary of the Carpathian plate (Kováčiková et al., 1997). The previous analyses, and the recent one
performed by a new approach to imaging the induction data of the Wiese vectors at almost 1800 localities covering
mainly the Central European area (Wybraniec et al., 1999) suggest that these anomalies might be connected with the
North-German-Polish anomalous zone, representing an important part of the Trans-European Suture Zone (TESZ).
The analysis of certain models of electrical conductivity distribution is performed to fit the anomalous features of
the induction response data over the Central European area, specifically zones of anomalous induction in the eastern
margin of the BM, across the entire block of the BV and near the margin of the Carpathian tectonic plate.

The structure of the article is as follows: In Section 2, we give a short overview of the principal geological units of
the region under study. Section 3 briefly summarizes the geoelectrical features of the region previously inferred from
the geomagnetic induction data in the region. In Section 4, we formulate the thin sheet model used in the inversion.
The principles of the Bayesian inversion of the geomagnetic induction data for the conductance distribution in the
thin sheet are presented in Section 5. Section 6 then summarizes outputs of the Bayesian inversion for the induction
data over the BM/BV/WCP region with indications on possible correlations of the conductance model with regional
geological structures.

2 Geological context of the induction studies

Fundamental elements of the central European geological structure that are relevant to our modeling experiment are
schematically displayed in Fig. 1 together with the major geological units over the Czech and Slovak Republics covered
by induction response data involved in the modeling process.

(i) The Tornquist-Teisseyre tectonic zone (TTZ) constitutes one substantial part of a number of fault zones and
sutures found within the Trans-European Suture Zone (TESZ) that represents the most important geological boundary
in Europe separating mobile Phanerozoic western terranes (Meso-Europe) from the Precambrian east European Craton.
It is as clearly defined in the deep lithosphere as in the upper crust, Moho depths increase across this zone from 30 km
beneath Variscan Europe to 45 km beneath the East European Craton. In contrast to the relatively cold eastern craton
relatively high heat flow characterises Western Europe.

(ii) The Bohemian Massif (BM) represents the easternmost consolidated block of the Variscan branch of the Eu-
ropean Hercynides (Meso-Europe) that builds up Bohemia and the western part of Moravia. The major elements of
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the BM are several SW-NE trending zones separated usually by deep-seated faults, which are reflected in the results
of the deep seismic profiling, in the gravity, geomagnetic and heat flow maps (Suk et al.,1984). The fault structures
are essentially parallel with the boundaries of individual Hercynian zones. The intersection of these zones with the
second order system of NW-SE trending faults is responsible for the complicated block structure of the BM.

(iii) The Carpathians belong to the young Tertiary Alpine-orogenic belt and they constitute the NE branch of the
Alpides. Their boundary with the Eastern Alps runs along the Danube Valley. The northern boundary with the East
European Platform is defined by the erosive margin of the flysch nappes. Our model covers the West Carpathians
(WCP) and we distinguish here the inner (central) Carpathians, the Klippen zone, the outer (Flysch) Carpathians and
the Carpathian foredeep (Fig. 1, dashed-line rectangle).

(iv) The Brno unit, termed recently the Brunovistulicum (BV) (Dudek, 1980; Suk, 1995) lies in between those
previously mentioned structural elements. The BV unit is assumed to be an independent geological structure forming
the Precambrian (Cadomian) basement (Palaeo-Europe) of both the eastern part of the Hercynides (Variscides) of the
BM and the Alpides, i.e. of the WCP in Moravia. Recent geophysical and geological data have shown that the BV
and the whole Moravian block occupy a highly independent position and form a separate geological unit belonging
probably to the Fenno-Sarmatian Platform (Dudek, 1980).

3 Geoelectrical data and features of the region

3.1 The data

The experimental data were collected in 1970’s and 1980’s in a series of field experiments organized in co-operation
with Czech, Slovak and Polish colleagues. The field measurements consisted in analogue recordings of magnetic
transient variations at alltogether 150 temporary field sites over an area of about 500 × 250 km2. They were analysed
in terms of induction arrows (Wiese, 1962). At each station, in-phase and out-of phase induction arrows have been
estimated for periods in the range of 1200 to 5840 s. They correspond to the real and imaginary components of single-
station transfer functions between the horizontal and vertical components of the transient magnetic field at the station.
A sample of the real and imaginary induction arrows at a particular period of T = 3860 s is presented in Fig. 2.

3.2 Major conductivity anomalies

As the magnetic Z-component is known to be highly sensitive to laterally inhomogeneous distribution of the internal
electrical conductivity, maps of these vectors provide us with a view of the changing anomalous behaviour of the
Z-variation as function of frequency and location. Reversals of the arrows distinguish zones of anomalous induction,
which often mark important geological features such as contacts between blocks with different geological histories of
development, zones of past and recent tectonic activities, collision zones and etc. A qualitative analysis of the maps
of induction arrows led to evidence two major conductivity anomalies in the area under study. Quantitative modeling
allowed to characterize the conductivity distribution in the lithosphere that accounts for the observed induction arrows.

The Carpathian anomaly, WCA The induction vectors across the WCP region show a clear perpendicular ori-
entation with respect to a general trend of the anomalous induction zone localized along the external margin of the
Carpathians Mts. chain (see WCA in Fig. 2. They show almost a perfect 180o reversals of their azimuths above the
anomalous induction zone. In the WCP, modules of the induction vectors situated to the south from the zero line are
by about 25-50% larger than the corresponding induction vectors located to the north of the anomaly. The Carpathian
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Figure 2: Sample of experimental real and imaginary induction arrows in the BM/BV/WCP region for the period of
3860 s, with two main regional conductivity anomalies indicated, the West Carpathian conductity anomaly (WCA)
and the conductivity anomaly on the eastern margin of the Bohemian Massif (EBMA).
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geoelectrical anomaly is constrained by the presence of high-conductivity rock series at depth of 10-25 km in different
segments of the orogen. Different geological models explaining the presence of highly conductive rocks or solutions
as sources of the anomalies have been suggested. The role of altered and/or fractured rocks, saturated with hot mineral
waters, as well as the proximity of anomaly sources to boundaries of different crustal blocks, including those between
the Carpathians and adjacent platforms, have been taken into account (Ádám and Pospíšil, 1984; Jankowski et al.,
1984; 1991; 2008; Hvoždara and Vozár, 2004). Other authors discuss possible connection between the Carpathian
anomaly and the presence of metamorphosed coal bearing Carboniferous strata beneath the orogen or relation to the
graphitized rocks occurring close to the boundaries of crustal blocks (Glover and Vine, 1992; Glover and Vine, 1995;
Źytko, 1997).

The EBMA anomaly The induction vectors on the eastern margin of the BM are distinguished by the vectors
oriented predominantly parallel to the general SW-NE trend of the anomalous zone. Also the reversal of the azimuths
at the anomalous zone is rather poorly developed, only sudden changes of azimuths are observed at individual profiles.
These facts are clear indications of a 3-D character of the conductivity distribution. The EBMA has been generally
attributed to processes in the the subduction of the eastern margin of the BM beneath the WCP plate, but precise
induction processes for generating the peculiar 3-D features of this anomaly are still unknown (e.g. Kováčiková et al.,
2005). Speculating on the physical/geological sources of the anomaly may thus be premature.

3.3 Results from numerical modeling

From the equivalent current systems (Červ et al., 1997) it was concluded that the source depth of the induction
anomalies can be about 18 km in the WCP region and about 10 km in the EBM/BV. These estimates are suggesting the
source of the anomalies at shallower depth than those obtained previously by separating the magnetic field variations
into internal and external parts (Pěčová and Praus, 1996) and applying the line current approximation (Jankowski et
al., 1985).

2-D models for induction vectors along the profiles crossing the WCP are summarized in (Jankowski et al., 1985).
The models featured anomalous bodies with a cross-section× conductivity parameter of the order of 107 to 108 Sm,
with the top of the bodies at depths beneath 12-15 km. In (Jankowski et al., 1991) the 2-D modeling was used for
simultaneous modeling of the induction vectors and apparent resistivities, collected in a series of sites in the Polish
section of the Carpathian Foredeep. In the latter models, the source of the WCA was situated at shallower depths, less
than about 10 km, and hypothesized to be related to deep sediments of the Carpathian Foredeep. The 2-D inversion on
the Carpathian data was firstly used in (Červ and Pek, 1981). The geoelectrical structural model along the DSS profile
No VI, crossing the BM, BV and WCP, based on the MT and MV results was presented in (Červ et al., 1984).

3.4 Depth of the asthenosphere

The electrical asthenosphere, if present, is an additional structural feature that can affect the induction data especially
at long periods. In the model derived from the P-wave residuals for the Bohemian Massif the depth of the lithosphere-
asthenosphere transition zone are between 90 and 140 km (Babuška et al., 1988). From MT sounding a layer of
increased electrical conductivity attributable to the asthenosphere was interpreted at depth between 100 and 150 km
(Červ et al., 1984).

The most likely depth of the conducting layer in the upper mantle in the Pannonian Basin region are between
60 and 85 km in the central part of the depression. The depths seem to increase towards the flanks of the basin to
about 100 km (Ádám, 1976). In some parts (Rába-Rožnava tectonic line) the thickness of the litosphere reduces to
even less than 60km (Ádám, 1988). The regions of lithosphere thinning penetrate from the Pannonian Basin into
inner parts of the WCP in several promontories. In the thinned part of the lithosphere in the West Carpathians the
lithosphere-asthenosphere transition zone is at the depth 90-120 km (Červ et al., 1984).

A gradual increase of the lithosphere thickness to 140-180 km occurs in the Outer Carpathians and father towards
the margin of the East European Platform (Praus et al., 1990). In the Alps the depth of the asthenosphere varies from
100 to 200 km (Praus et al., 1990).

4 A possible thin sheet model

In the subsequent inversion for a laterally non-uniform conductance, we will use a thin sheet model formally defined
as follows:

Let us consider a model consisting in a heterogeneous thin sheet at the surface of or embedded in a 1-D medium,
hereafter called normal model. The normal model is defined by the conductivities σn(r) at any point r. In the thin
sheet, the actual conductivity σ(r) differs from the normal one in a domain of interest Ω. Inside Ω, σa(r) denotes the
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difference σ(r) − σn(r): σa(r) is the anomalous conductivity that is zero outside Ω. Solutions of the forward and
inverse problems have already been published for such a model. They are briefly recalled in the next section.

With regard to the experimental geomagnetic TF’s available, several aspects of the thin sheet model must be
considered. First, the validity of the thin sheet hypothesis must be assessed. We assume that the anomalous electrical
targets are localized mainly in the crust. Penetration depths for typical continental crustal sections should not be less
than about 50 km in the period range of thousands of seconds (corresponds to the resistivity of 10 Ωm and period
of 1000 s). Thus, the anomalous zone of 20-30 km below the Earth’s surface can be reasonably (though, may be,
not completely unquestionably for highly conductive anomalous zones) approximated by a thin sheet. According to
Bruton (1994), the size of the square tiles a used to discretize the anomalous subdomain Ω of the sheet should meet
the condition aωμSmax � 1. For the most extreme parameters in our models, say Tmin = 1200 s and Smax =
5000 siemens, the size of the tiles should be much less than about 30 km. We typically use tiles with a = 20 to 25 km
in our models, which meets the Bruton’s condition for most of the model situations.

The second aspect is the depth of the thin sheet. As we are not able to employ a multiple sheet model in the
inversion at present, we use a single thin sheet that integrates all the conductivity anomalies from the surface down to
the crust. Thus, the sheet is situated on the surface of the Earth in our experiments. This may result in increased misfit,
especially in imaginary induction arrows, if the anomalous current flow deep in the crust.

The third aspect is the embedding normal structure. Due to large differences of the depth vs. resistivity sections
of the two main region of our study, the BM and the WCP with the adjacent Pannonian Basin, we cannot suggest
any single 1-D normal model down to the asthenospheric depths for the whole region. Therefore, we simplified the
normal model into a two-layer structure with a poor conductor resistivity of several hundreds of Ωm up to 1000 Ωm)
underlaid by a more conductive asthenosphere with resistivity within the range of 100-500 Ωm. The effect of the
topography of the asthenospheric layer was checked independently by a 3-D modeling experiment with seismic data
(Praus et al., 1990) taken to approximate the top of the asthenosphere. The checks showed that the effect of the
asthenosphere is negligible in induction arrows for periods of the order of thousands of seconds unless the resistivity
of the asthenosphere is less than about 10 Ωm.

5 Bayesian Monte Carlo Markov Chain thin sheet inversion

We present in this section the Bayesian Monte Carlo Markov Chain (MCMC) method we used to solve the inverse
problem. For the sake of self-completeness, let us first briefly recall basic notions concerning Bayesian inversion and
Markov chains behaviour. The readers are referred to Roussignol et al. (1993), Menvielle and Roussignol (1995), and
Grandis et al. (1999; 2002), and references therein for more details.

5.1 The Bayesian approach

Let the a priori knowledge be the information available on the model before processing the data, and the a posteriori
knowledge the information available after processing the data. A priori and a posteriori distributions account in a
probabilistic way for the a priori and a posteriori knowledge respectively. In the Bayesian context, solving the inverse
problem thus comes down to determining the a posteriori knowledge by updating the a priori knowledge with the
information gleaned from the data (Box et Tiao, 1973; Berger, 1985; Press et al., 1989).

Solving the inverse problem first requires the direct problem to be solved. Let F be the direct problem function
which enables computation of the observations d for a model m. Assuming that the error δd is only related to the
data acquisition, it becomes

d = F (m) + δd

The a priori knowledge is given by a probability distribution function (pdf ) P0(M = m |M ∈ M) defined on
the set of possible models M. The a posteriori probability for the parameter vector M to take the value m given the
observations d is given by Bayes’ formula (Bayes, 1763; also see, e.g., Bolstad, 2004, for a more modern treatment).
Noting P (M = m |D = d,M ∈ M) the conditional probability of M given D, and assuming that the error δd is
gaussian with standard deviation τ , it becomes

P (M = m|D = d,M ∈ M) =

exp

[
−
||F (m) − d)||2

2τ2

]
P0(m)

∑
m∈M

exp

[
−
||F (m) − d)||2

2τ2

]
P0(m)

(1)

The value d of the random vector D corresponds to the observed data. Since d is not modified during the inversion
process, we will from now on omit D in the expression of the probability distributions and denote the a posteriori pdf
P (M = m|D = d,M ∈ M) simply by Π(m).
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The normalization constant, which appears in the denominator of eq. (1) is a sum over the set of possible models,
the dimension of which is very large: for instance, it is equal to M × L for models with M parameters that can each
take on L different values. It is actually very difficult, if not impossible to estimate directly. We choose to use a Monte
Carlo Markov Chain (MCMC) simulation method to achieve this estimation.

5.2 Markov chains

In order to estimate the pdf Π(m), let us define a Markov Chain on the set M of possible models that have Π(m)
as invariant probability. The marginal pdf ’s of Π(m) will be estimated by empirical averages from simulations of the
Markov Chain.

Consider a system which can take a certain number of states and evolves at random with time. At a given time,
the state of the system can be described as a random variable M, the values of which, m, belong to M. The system is
a Markovian process if, at any time, its future evolution depends only on its present state. It means that a Markovian
system depends only on its past through its present state. Markov chains are a particular class of Markovian processes
such that (i) the set M is finite or countable, and (ii) the successive times for the evolution are denoted by integers.
A series {M(n), n = 0, 1, 2, . . . , N} of random variables with values in a finite or countable space is then a Markov
chain if the state of the system at the time n + 1, M(n + 1), depends only on its past through the state of the system
at time n, M(n). The behaviour of a Markov chain is defined by the set of its transition probabilities,

Pn(m,m′) = P (M(n + 1) = m
′|M(n) = m) ,

where m and m
′ belong to M. If (i) the transition probabilities do not depend on time n, (ii) M is finite, and (iii) each

possible state can be reached from any other, the chain is a homogeneous ergodic aperiodic Markov chain, and there
exists one, and only one probability density function Π on M which is invariant for the Markov chain. When n
increases towards infinity, the behavior of ergodic Markov chains is such that the average fraction of time at which the
chain is at a state m (m ∈ M) tends towards the invariant probability of m, i.e. Π(m).

Methods for Bayesian inversion with Markov chains has been proposed for the 1-D magnetotelluric (Grandis et
al., 1999) and DC problems (Schott et al., 1999) with the a priori of smooth variation of resistivity with depth, and for
the thin sheet approximation (Roussignol et al. 1993; Grandis, 1994; Grandis et al., 2002). The present analysis of
crustal conductivity over the transition from the Bohemian Massif to the West Carpathians relies on the inversion of
induction arrows using the latter method, which is briefly described in the following sections.

5.3 The thin sheet forward problem

Let us consider a model consisting of a heterogeneous thin sheet at the surface of or embedded in a 1-D medium,
specified in detail in the first two paragraphs of Section 4 above. Let E(r, ω, σ) and H(r, ω, σ) be the time Fourier
transforms of the electric and magnetic field at point r and circular frequency ω, ω = 2π/T , T period, for the actual
conductivity structure σ. Using the Green kernel method, we can rewrite basic equations of electromagnetism as
(Weidelt, 1975)

E(r, ω, σ) = En(r, ω) − iωμ

∫
Ω

σa(r′) G(r, r′, ω)E(r′, ω, σ(r′)) d3
r
′, (2)

H(r, ω, σ) = Hn(r, ω) +

∫
Ω

σa(r′) curl(G(r, r′, ω))E(r′, ω, σ(r′) d3
r
′, (3)

at any point r and any frequency ω. The quantity μ is the magnetic permeability of the vacuum in our models.
G(r, r′, ω) is a 3× 3 complex matrix, named Green kernel, and represents the Fourier transform at frequency ω of the
electric field created at point r by a unit dipole δ(r′) located at point r′ (Morse and Feshbach, 1953), curl(G(r, r′, ω))
is a 3 × 3 complex matrix obtained by taking the curl at point r of the field of the column vectors of the matrix
G(r, r′, ω).

A numerical solution of the forward problem has been first proposed by Vasseur and Weidelt (1977) for a superficial
thin sheet. The Vasseur and Weidelt’s (1977) approach can be extended to a thin sheet at any depth below the surface.
The code was made operational by Tarits (1989). These solutions are based upon a digitization of Ω in K small square
cells Pk, k = 1, . . . , K , in which conductivities, Green kernels, electric and magnetic fields are nearly constant.
Let S(Pk) and Sn(Pk) be the actual and normal integrated conductivities (i.e. conductances) of the cell Pk, and
Sak = S(Pk) − Sn(Pk), k = 1, . . . , K , the anomalous conductance of Pk. Then basic equations become, using the
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same notations for the sake of simplicity,

E(r, ω, S) = En(r, ω) − iωμ
∑

k

Sak G(r, Pk, ω)E(Pk, ω, S(r′)) |Pk|, (4)

H(r, ω, S) = Hn(r, ω) +
∑

k

Sak curl(G(r, Pk, ω))E(Pk, ω, S(r′)) |Pk| (5)

at any point r and any frequency ω.
Let us consider the linear system made up of equation (4) written at each point Pk of Ω, k = 1, . . . , K . Given

the distribution of anomalous conductances Sak, k = 1, . . . , K , the quantities E(Pk, ω, S(r′)) are solutions of this
system. For each frequency, the system has 6 × K equations and 6 × K real unknowns in the general case. Solving
this system allows us to compute the electric field E(r, ω, S(r)) at any point r and frequency ω. The magnetic field
H(r, ω, S(r)) is then derived using (5) written at any point r and frequency ω.

5.4 The inverse problem

The structure of the embedding 1-D model, i.e., Sn(r), the depth of the heterogeneous thin sheet, the domain Ω, and
the cells Pk are first defined, and remain fixed during the inversion. Their values are to be deduced from previous
investigations in the studied area (geology, other geophysical methods, . . . ) and from laboratory measurements of
rock conductivity. The conductances Sk, k = 1, . . . , K , are the parameters, and solving the inverse problem consists
in estimating their a posteriori pdf given the data d = (dij), i = 1, . . . , I, j = 1, . . . , J , and the a priori pdf P0.

The data d are actually estimates of a function T [E(r, ω, S(r)),H(r, ω, S(r)) ] at points ri, i = 1, . . . , I, of the
surface and frequencies ωj , j = 1, . . . , J , plus an experimental noise δd,

dij = T [E(ri, ωj , S(r)),H(ri, ωj , S(r)) ] + δdij . (6)

The δdij , and therefore the dij are assumed to be independent gaussian random variables with zero mean value and
standard deviation τ .

In situations for which no particular information is available, we choose as a priori distribution the product of a
uniform pdf on each layer. In this case P0 is a uniform distribution over all the possible models and where the different
parameters are independent. P0 is digitised over a set of conductance values, hereafter called possible conductance
values, the choice of which depends on the a priori knowledge of the considered medium. There is no constraint on
this choice, but it is clear that the larger this number the better the determination of the a posteriori distribution, but
the greater the computer time. The possible conductance values may depend on the cell. We will only consider here
situations with the same number L of possible values Sl, l = 1, . . . , L, for each cell. The a posteriori distribution will
accordingly be expressed as the a posteriori probability of these possible conductance values.

The a posteriori pdf of the parameters S is estimated by means of a Markov chain. Let an algorithm that considers
each cell Pk successively and updates the value of the parameter for this cell with a transition probability equal to the
conditional probability distribution of Sl, l = 1, . . . , L, given the actual values of the parameters for the other cells,
the data d and the a priori pdf P0(S). The sequence of images thus obtained after each scanning of the whole set of
K cells is a homogeneous Markov chain, because the probability of an image depends only on the previous image,
and does not change with step n. This process is a Markov chain on M called the Gibbs sampler (Robert, 1996).
It is ergodic, and its invariant probability Π is the a posteriori probability is the conditional probability Π(S) of the
parameters given the data d and the a priori pdf P0(S) (Roussignol et al., 1993; Roussignol and Menvielle, 1995;
Robert, 1996; Grandis et al., 1999; 2002).

In the present case, the required L × K solutions of the forward problem that are necessary for computing the
transition probability of the Markov chain (in the present case, the K conditional pdf ’s corresponding to the whole set
of cells) requires a very long CPU time. In order to limit the CPU time, the forward problem is not fully solved at each
scanning, and the electric field is estimated by the Markov chain. The Markov chain is then a two-dimensional one,
which estimates a quantity (the conductance) distributed over a finite set of real values and another one (the electric
field) distributed over a continuous set of real vectors.

The asymptotic behavior of such a Markov chain has first been studied empirically by Jouanne (1991), then Gran-
dis (1994) for situations representatives of those encountered in geophysics. Using synthetic models, Grandis (1994)
evidenced that the empirical average of the transition pdf of this Markov chain tends towards an invariant pdf that cor-
responds to the a posteriori pdf of the parameters, provided the estimate of the electric field at each scanning is precise
enough for the transition probabilities to be reasonably estimated. Later on, Touijar (1994) gave the first demonstra-
tion that such a chain converges under given conditions. The physical interpretation of Touijar’s mathematical results
suggests that the empirical results established by Jouanne (1991) and Grandis (1994) are likely to be valid for most of
geophysical situations (Menvielle and Roussignol, 1995).
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6 The inversion

6.1 The description of the model and data

In accord with the above discussion, we chose the following particular parameters for the thin sheet model used in the
MCMC inversion of the long-period geomagnetic induction data over the BM/BV/WCP region:

(i) The anomalous domain of the superficial thin sheet is divided into 21(N)×29(E) square cells, each 25×25 km2

in size, covering thus a region of about 500(N)×750(E) km2. This gives in total 609 variable parameters (cell conduc-
tances) for the inversion.

(ii) The normal model was composed of a two-layer background model with the first layer of 100 km/1000 Ωm and
a uniform basement of 300 Ωm. The basement was used to simulate the asthenospheric layer. The topography of the
asthenosphere was neglected. The layered model was overlain by a uniform infinite thin sheet with the conductance
of 300 siemens.

(iii) For the inversion purposes, the 150 experimental geomagnetic TF’s available were interpolated into the centers
of the sheet cells. As reliable data variances were not available for the experimental TF’s, we assumed the data to be
contamined with Gaussian errors with the standard deviation of 0.03.

(iv) For the MCMC run, data for only one period, T = 3860 s, were used to keep the computation times in
reasonable limits. Fit of the data and model arrows for further periods available were only checked by direct modeling
tests.

6.2 The MCMC procedure, convergence, output models, post-processing

For the MCMC procedure (Gibbs sampler), the conductance of each of the 609 variable cells could take on one of
12 predefined values from the interval of 3 to 5000 siemens. The Markov chains were typically running for 1000 cycles
of the Gibbs sampler, which took about 10 hours of the CPU time on a standard PC station (Intel Xeon 3 GHz, 1 MB
RAM). Repeated MCMC runs were carried out to simulate parallel chains and check the convergence of the MCMC
process. First 500 cycles of each of the MCMC chains were discarded as a burn-in period during which the chain
approaches a vicinity of the solution and stabilizes. In our runs, the chains did not change substantially after the burn-
in period, and simulated parallel chains converged to similar conductance distributions for the same cells. From this
rough diagnostics, we can conclude that the chains converged and can provide reasonable estimates of the means of
the cell conductances within the selected model class M. As the number of MCMC iteration cycles is relatively small
in our experiments, it is not realistic to obtain reasonably accurate estimates of higher moments of the aposteriori pdf ’s
for the cell conductances. In fact, only highly qualitative conclusions may be made as regards the uncertainties of the
variables.

The MCMC procedure gives a series of models which should be probabilistically distributed in accord with the
experimental data. We obtain a whole histogram of conductance values for each cell, which shows how much likely
are the particular conductance values in the cell considered. After long enough iteration process, the histograms
approximate the marginal aposteriori probabilities of the discrete conductance values in the individual sheet cells. We
can estimate the mean values of the cell conductances by integrating over the histogram, as well as the most probable
cell conductances (maximum aposteriori probabability, or MAP estimates) by taking the most frequent value from the
histogram.

Fig. 3 displays sheet models over the BM/BV/WCP region set together from the mean values of the conductance
in the individual sheet cells and from the MAP estimates of the cell conductances. These models do not represent
the average or MAP models from the chain, which would both require integration of the multi-dimensional empirical
posterior pdf over the whole parameter space. The presented models are put together from estimates based on indi-
vidual marginal pdf ’s for the individual sheet cells. It is clear that these models may differ considerably from each
other, especially in regions where the cell conductances are poorly constrained by the data. Nevertheless, the models
in Fig. 3 represent simple integrated information on the conductance structure projected from a 3-D probabilistic (his-
togram) image of the cell conductances provided by the whole underlying Markov chain. Fit of the model data from
the ‘average’ model in Fig. 3 (left) and the experimental induction arrows is shown in Fig. 4 for the inverted period
of 3860 s. Model vs. experiment fit for longer periods (not shown) is very similar, larger discrepancies are observed
for the period T = 1200 s with model induction arrows substantially smaller than the experimental data. This is most
likely due to a misspecified depth of the sheet in our model (superficial sheet).

Qualitatively, we can also estimate the uncertainty of the conductance by simply observing the ‘flatness’ or ‘peak-
iness’ of the histograms for the cell conductances. In Fig. 5 (left), we show the ‘average’ model from Fig. 3 (left)
modified by keeping in it only those cells for which 90% of the cell conductance values in the MCMC histograms fall
within an interval of a width of 2/3 of a decade. All remaining cells, with flatter conductance histograms, have been
discarded. The cells in Fig. 5 (left) thus indicate regions of the model in which the conductance is reasonably well con-
strained by the data. More precise, quantitative uncertainty estimation would be perhaps possible from longer MCMC
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chains which would allow us to integrate directly for variance-covariance functions estimates for the parameters.
Because of high computational demands, thin sheet models for the MCMC inversion are mostly designed with

only a coarse tiling. In the model post-processing stage, spatial smoothing often results in a more realistic image of
the conductance distribution. The smoothed image has to be checked by an additional direct modeling test. We show
a smoothed version of the ‘average’ conductance model from Fig. 3 (left) in the right-hand side panel of Fig. 5.

Figure 3: Left: Conductance model over the BM/BV/WCP region designed from average cell conductances obtained
form the stabilized part of the Markov chain. Right: Conductance model designed from maximum aposteriori con-
ductances in the individual sheet cells. The color scale corresponds to the logarithm of the conductances. Period of
inverted data was 3860 s.
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Figure 4: Fit of the real (left) and imaginary (right) induction arrows for the period of 3860 s. White arrors show the
input data obtained by interpolating the experimental TF’s into the centers of the sheet cells. Orange-yellow arrows
were generated by the thin sheet model designed from average cell conductivities from the MCMC chain (model to
the left in Fig. 3).

7 Tectonic correlation

Interpretation of narow-band long-period geomagnetic data by the MCMC sampling can only provide a large-scale
image of the conductance distribution which conforms with the observed TF’s. The conductance pattern restored from
the induction arrows collected above the eastern slopes of the BM and its transition to the WCP gives a geologically
plausible image of the region. The Carpathian conductivity anomaly is reconstructed in detail, suggesting possible
weakening/local interruption at the crossing with the Central Slovakia fault zone (near 19.2oE in Fig. 5 right) where
other geophysical fields and geological indicators show discontinuous features on a presumably strike-slip fault (e.g.,
Kováč and Hót, 1993). Though in coarse mesh, the high conductance anomaly well fits the position of a low resistivity
layer from the magnetotelluric data collected in the esternmost sector of the model, close 22oE (Vozár, 2005).

The induction anomaly at the eastern margin of the Bohemian Massif seems to have a more complex explanation
than that of a quasi-linear conductor along the SW-NE zone of a rapid change of direction of the induction arrows
(see Fig. 2). Two features may be observed in the model in Fig. 5 (right), which were already discussed earlier by
Kováčiková et al. (2005). First, it is a conductive zone in the NE of the BM, which may generate induction arrows
directed towards the SW, as clearly observed all across the area to the west of the EBMA. Second, it is an alteration
of conductive and resistive E-W zones in the eastern part of the BM. Though still not clear how much of this effect
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Figure 5: Left: Model from Fig 3 (left) with only those cells of the original ‘average’ model shown that have 90% of
all conductance values within 2/3 of a decade. Cells with flat histograms are eliminated. Right: Spatially smoothed
‘average’ conductance model. The dashed lines indicate main regional fault zones.

may be caused by the profile arrangement of the data, this quasi-anisotropic domain is actually required by the data. It
helps in feeding the induction process all across the Moravia region and in keeping the relatively large modules of the
induction arrows in that region. If these induction sources could be verified, the regional induction in the eastern part
of the BM would be mainly driven by the NW-SE to W-E pattern of tectonic zones (Elbe fault zone, Sudety faults,
Poříčí-Hronov fault zone, Odra fault zone, etc.) rather than by the SW-NE zones which conform with the tectonics of
the transition to the WCP.

8 Conclusion

From the experience accumulated with the MCMC inversion we can conclude that for moderately sized thin sheet
models (tens of cells in each direction), the MCMC inverse procedure is practicable with standard computer facilities.
Speeding-up the forward solutions by using a 2-D Markov chain derived from the integral equation numerical approach
by Vasseur and Weidelt (1977) is essential for the algorithm.

Though computationally still demanding, the advantage of the MCMC is that it provides a probabilistic output
for the inverse solution. Parameters can be assessed with respect to their values and uncertainty ranges, though true
uncertainties (variance-covariance matrices) are hard to obtain in problems with demanding direct solutions. Effective
visualization of complete probabilistic outputs from the MCMC algorithm may still be one of its weak points.

The conductance pattern restored by the MCMC sampling from the induction arrows collected above the eastern
slopes of the BM and its transition to the WCP gives a geologically plausible image of the region. The Carpathian
conductivity anomaly is reconstructed in detail. The induction anomaly suggested at the eastern margin of the BM
admits an alternative explanation in terms of a NW-SE to W-E conductance patterns, hypothetically coinciding with
the fault pattern of the eastern Bohemian Massif. A detailed verification of the structural hypotheses in this region is,
however, hardly possible by employing the long period geomagnetic induction data alone.
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Jankowski, J., Jóźwiak, W. and Vozár, J., 2008. Arguments for ionic nature of the Carpathian electric conductivity
anomaly, Acta Geophys., 56, 455-465.

Jouanne, V., 1991. Application des techniques statistiques Bayesiennes a l’inversion de données électromagnétiques,
Doctorat d’Université, Université Paris VII.
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Źytko, K., 1997, Electrical conductivity anomaly of the Northern Carpathians and the deep structure of the orogen,
Annales Societatis Geologorum Poloniae, 67, 25-43.

23. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung, 
Heimvolkshochschule am Seddiner See, 28 September - 2 Oktober 2009

 
 
243


