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1 Summary

In this report we present a numerical method for solving Maxwell’s equations in the time domain
assuming an arbitrary two-dimensional conductivity distribution including an isolating air half-space.
The method allows to carry out the computations for the subsurface only, because the air-earth interface
is handled by an exact boundary condition. The spatial discretization is done with the finite element
method, leading to a linear system of ordinary differential equations (ODE). We use state-of-the-art
Krylov subspace methods for this ODE to advance a given initial electric field to selected times of
interest. The presented theory is tested with some standard models and compared to a traditional
finite difference time stepping implementation with respect to accuracy and efficiency. The results
clearly demonstrate the superiority of the presented method in terms of run time given a comparable
accuracy.

Keywords: Analytic boundary condition, finite element method, Krylov subspace, time domain, transient
EM

2 Introduction

The transient electromagnetic (TEM) method has become a standard technique in geophysical prospect-
ing during the past years. It is already in wide use, e. g., for the exploration of important resources like
hydrocarbons, groundwater and minerals. One important aspect here is a reliable and computationally
efficient simulation of the decaying electromagnetic field, which can be leveraged to get a better under-
standing of field behavior in complicated real-world settings as well as a building block in inversion
schemes, that ultimately aim at resolving arbitrary conductivity structures from only a few well-placed
measurements.

The predominant forward modeling technique in the literature is the finite difference time domain
(FDTD) method, that was already introduced by Yee (1966). An explicit time-stepping technique, that
already dealt with an isolating air half-space, was developed by Oristaglio and Hohmann (1984) for the
two-dimensional case and later refined by Wang and Hohmann (1993) for three dimensions. Like for
other explicit time-stepping methods, the size of the time steps, that the described Du Fort-Frankel
scheme can stably perform, depends on the grid spacing and the lowest conductivity. Although the
resistive air is already eliminated, thousands of time steps have to be performed although only a few
dozen solutions are necessary to describe the decaying field.

The approach taken here is based on a finite element discretization, which allows for greater flexibility
when modeling complicated conductivity structures. High accuracy is obtained with less effort compared
to graded tensor product grids used with finite differences. It also helps in the construction of an
analytic boundary condition, avoiding a few drawbacks the implementation by Oristaglio and Hohmann
(1984) has. Contrary to the finite difference approach, the matrices resulting from the discretization are
symmetric and, thus, allow for a wide range of efficient and state-of-the-art time integration techniques,
which can exploit this property. One such family of time integrators is based on building a Krylov
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subspace and extracting approximations to the matrix exponential function from said space, thus
evaluating the sought electric field directly at a given time.

3 Theory

3.1 Governing Equations

Our governing equation derives from Maxwell’s equations in the diffusive limit, with the constitutive
relations used and the magnetic field already eliminated. Thus, we write

V x (,U,_IVX 6) +8tae: —Btje (1)
with
e=e(x,t) the electric field,
w= p(x) the magnetic permeability,
oc=o(x the electric conductivity, and
j¢ = 3%z, 1) the impressed source current density.

We now restrict ourselves to the two-dimensional case (zz-plane) with infinitely long line sources
perpendicular to this plane. Given these assumptions, we can express the electric field as

e(r,y, 2, t) = e(x, 2, 1) y (2)
where y is the unit vector along the y-axis and e a scalar function. Equation (1) then reduces to

—V2e + opude = —pudyj°. (3)

Lo

Figure 1: Computational domain with an arbitrary conductivity structure. On top is the air-earth interface
(bold), the remaining boundaries are subsurface boundaries.

Our computational domain 2 (cf. Figure 1) is a rectangle and its top edge is aligned with the air-
earth interface I'y = {(z, 2) : # = 0} on which we impose an explicit boundary condition and perfect
conductor boundary conditions on all other domain boundaries. It is important for these boundaries to
be sufficiently far away from the sources, so that they don’t distort the propagating field.

Our objective will be to compute the configuration of the electric field e; at times ¢; for i € {1,2,...,n}
given an initial field ey at to. We use sources that are switched off at ¢ = 0 and therefore the right hand
side of (3) vanishes for ¢ > 0.
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3.2 Air-Earth Interface

We assume that e satisfies Laplace’s equation in the isolating air half-space (z < 0)
~V?e = 0. (4)
Applying the Fourier transform in x to this equation yields
0.6+ ke =0, (5)

where é is the Fourier transform of e. After a few transformations (cf. Goldman et al. 1986) one can
derive the exact boundary condition at z = 0%

0,e = Te + pudyj© (6)

with the linear operator 1" being a linear convolution operator in x. This approach is also extensible to
three dimensions and is described in detail in Goldman et al. (1989).

3.3 Spatial Discretization

Our next step towards a computable model is the discretization of the spatial domain. We focus on the
finite element method, but also briefly mention finite differences because those are also used in the
numerical examples.

Finite Elements To be able to apply the finite element method we need a variational formulation of
our problem in (3), which is given by

—+00

Orale, ), + c(e, ) + / d.e(x,z=0",t) ¢(z,0)dz =0 (7)

with the bilinear forms a and ¢ defined as
a(u,0), = 1 / o (@) u(z) v(x) d, (8)
R
c(u,v) = Vu(x) - Vu(z) do 9)
R
where R% = {(z,2) : 2 > 0} denotes the lower half-space.

By using the exact boundary condition (6) we can write

+o0 “+o0o

Te(a, 1) (. 0) dz = —p / 0, (. 1) 1 (, 0) d. (10)

—00

drale, ), + cle.v) + |

—00
To be able to discretize this equation we need a computable expression for the following bilinear form
+o00
o) = [ To@)vie) do (1)
— o

and indeed, after some rearrangement in the Fourier domain, one obtains (Goldman et al. 1986)

+oo +o00
o) =2 [ [ og(o — u) (o) v/ (o) dedy (12)

The discretization of this integral on the boundary of a triangulation can now be easily computed.

The continuity of e allows us to use standard linear Lagrange elements on a triangulation of the
computational domain. After discretizing the variational formulation we arrive at

Moe = Ke. (13)
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Finite Differences For comparison, we also perform a finite difference discretization and get the ODE
0,e = Ae where A is a large sparse matrix representing the discrete curl-curl operator.

The following procedure, that has to be repeated in every time step, outlines the implementation of an
exact boundary condition in this setting: Take the field data at the air-earth interface, interpolate it to
an equidistant grid, perform an FFT to transform the data into the wave number domain, multiply
every wave number with a constant (this would be a convolution in the space domain), revert the
FFT and finally interpolate back to the graded grid to get the field values at a negative z, thus, inside
the air half-space. Use the data resulting from this classical upward continuation in the usual finite
difference stencil to compute the top layer in the next step.

A variation of this approach was also implemented for the numerical examples. It combines all of the
above steps into a single (dense) matrix that has the same effect but can be evaluated more efficiently.
This is called matriz upward continuation later on.

Details about the finite difference discretization can be found in Oristaglio and Hohmann (1984).

3.4 Time Integration Techniques

Krylov Subspace Methods Krylov subspace methods cover a big range of applications and are in
use for several decades. What we want to focus on are Krylov subspace methods for the evaluation
of matrix functions, like we can see in (13), where the function is the matrix exponential and the
matrices come from the spatial discretization using finite elements. A nice side effect of the origin of
those matrices is, that they are usually symmetric which many algorithms can benefit from.

Given a square matrix A of size n x n, a vector b of length n and a suitable scalar function f, we can
write

f(A)b=p(A)b. (14)

with p a polynomial that Hermite-interpolates in the eigenvalues of A. We will be focusing on the
exponential function and on rational Krylov subspaces, that are defined as follows

Q(A7 b) = Qm—l(A)_l K:m(Av b) (15)

with K, (A, b) = {b, Ab, A*b,..., A" 'b} and

m—1
1) = T] 8. (16)
700

Such subspaces are constructed, e. g., with the rational Arnoldi method to obtain an orthonormal
basis of Q,, from which approximations to f(A)b can be computed with several procedures. We have
to choose the poles ; of the rational Krylov subspace. Their number and choice highly impact the
quality of the approximations that can be extracted from the subspace. Luckily, there is a heuristic to
determine good poles for the approximation of the exponential function, given a certain parameter
interval (in our case the times we want to advance to) and accuracy requirements. These, and many
more things concerning rational Krylov subspaces, are tackled in Giittel (2010), which is also a good
starting place to dig deeper into the literature.

Looking more closely at (13) we see, that in order to apply a Krylov subspace method we need to
remove the matrix M in front of the time derivative, e. g. by moving it to the right

e = M 'Ke. (17)

The inverse of the matrix doesn’t have to be explicitly computed, but we have to solve a system of
linear equations in every iteration step. This might be considered too expensive, so there is a technique
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termed mass lumping which converts M into a diagonal matrix that can be easily inverted without
distorting the solution too much.

However, even if we don’t have to solve linear systems with the matrix M, we do have to solve shifted
systems with the matrix K during the construction of the rational Krylov subspace. Therefore, an
efficient solver is also an important ingredient. We will see in the numerical examples what options we
have.

Time Stepping On the other hand there are simple, yet relatively efficient explicit time stepping
techniques. One of them is the well-known Du Fort-Frankel method which is implemented here to
perform the intergration in time for the finite difference discretization.

4 Numerical Examples

All computations were carried out on a machine with four AMD Opteron 8380 quad cores, running
at 2.5 GHz with a total of 128 GiB of RAM. The algorithms were implemented in pure MATLAB
code running under MATLAB 2008b, with some finite element related tasks (nothing time-critical)
performed by COMSOL 3.5a, both running in a 64-bit Linux environment. To generate reproducible
timing we restricted ourselves to one computational thread that was explicitly pinned to one of the
cores.

4.1 Model

The considered models are basically those from Oristaglio and Hohmann (1984), all based on graded
tensor product grids. We extended the mesh slightly so as not to get a distortion from the boundaries
for late times. The resulting grid has 236 x 88 cells, is 12800 m wide and 5255 m deep, with grid spacings
ranging between 10 m and 240 m. To make the computations comparable with the finite difference code
we decided to use exactly the same grid for the finite element code. We simply subdivided each cell
into two triangles, however, the number of unknowns or degrees of freedom and their locations are
identical. Technically, this is of course not necessary and a properly adapted unstructured grid would
certainly yield even better results at lower cost.

The initial field eq at to = 107%s is due to two line sources at positions (z,2) = (—500m,0m) and
(z,2z) = (0m,0m), the former being negative while the latter is positive with a unit source current
strength. It is computed analytically for a homogeneous half-space that corresponds to the background
conductivity of the model.

We have looked at two models with different conductivity structures. See Figure 2 to get an approximate
idea of their location inside the grid. The background has a resistivity of 300 2m and the conductor
(red) 0.3 Qm.

Iy

|

Figure 2: Schematic view of the computed models. The models are the homogeneous half-space and a conductor
(red) inside a homogeneous half-space. The conductor is located at the position 290m < 2 < 310m,
100m < z < 400m in the grid.
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4.2 Methods and Setup

Independently of the method of choice we start at the time tg = 107%s and integrate from there till
we reach t,, = 1072 s. We seek to compute the configuration of the electric field at 10 logarithmically
equidistant times per decade.

For the finite difference code we mostly stick to the implementation by Oristaglio and Hohmann
(1984), with the only option to perform the upward continuation in the traditional way, which is a
significant expense per time step, or we can decide to precompute the matrix formulation of this
upward continuation and to apply it in every time step.

For the finite element method we have no choice regarding the exact boundary condition. However, we
can choose between different variants of the rational Krylov method. For all of them we have a total
of 25 poles, which should be close to optimal for this application. For the first 24 poles we alternate
between 2.7826 - 10° and 0.0242 - 10°. The last pole is set to infinity.

We have four implementations, that we included in this test. Two of them use mass lumping to reduce
the mass matrix to a diagonal matrix. Furthermore, for each group we can either call the standard
MATLAB solver or we can exploit the fact that we have multiple identical poles for which we have to
solve with different right hand sides, but identical matrices. We do this by computing a sparse LU
factorization (we use UMFPACK for this) for every unique pole and then leverage that factorization to
speed up the solves during the construction of the rational Krylov subspace.

4.3 Results

We first look at the computation times that are pictured in Figure 3 and listed in Table 1. The times
shown here are for the homogeneous half-space model, but aren’t significantly different for the other
models since the grid and the minimal conductivity are identical. Thus, we can use these numbers to
judge the acceleration we can get by using our method.

timings timings

FD+cUC FD+cUC

FD+mUC FD+mUC

FE+rK FE+rK
FE+rK+ML FE+rK+ML

FE+rK+UMF FE+rK+UMF

I solve
[ setup + post—processing
: : :

I solve

FE+rK+ML+UMF i FE+K+ML+UMF [ setup + post-processing
: X . :

. .
0 5 10 15 20 25 30 35 0 20 40 60 80 100 120 140 160 180
tins tins

Figure 3: Computation times split into solve and setup/post-processing step, cf. also Table 1. On the left
are the computation times for the default grid and on the right for the regularly refined version
of this grid with approximately four times as many nodes and degrees of freedom. The following
abbreviations were used: classical upward continuation (cUC), matrix upward continuation (mUC),
rational Krylov (rK), mass lumping (ML), UMFPACK solver (UMF).

As is clearly visible, all FE-based methods are significantly faster than their finite difference counterparts,
sometimes even 22 times faster.

Looking at the transients (cf. Figure 4) at some select points inside the mesh, we see that although
these newer methods are so much faster, we don’t really sacrifice accuracy. In fact, in many cases the
finite element solution is more accurate than the one obtained by finite differences.

We conclude our numerical examples with showing some cross-sections (cf. Figure 5), that are nothing
but a few snapshots of an animation that is just not suitable for this medium, but nevertheless gives a
coarse idea of how the electric field propagates with time.
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Transients of the homogeneous half-space model with relative errors (left) and the model with a
conductor (right). Negative field values are denoted by dashed lines while positive values are drawn
with a solid line. We can see that we have a very good agreement between the FD and FE solution.
When comparing against an analytical solution in the homogeneous half-space, we see that the relative
errors are often lower than those of the FD solution, despite the lower numerical effort.

23. Schmucker-Weidelt-Kolloquium fir Elektromagnetische Tiefenforschung,
Heimvolkshochschule am Seddiner See, 28 September - 2 Oktober 2009

22



FE - t=1.01e-05s einvm™’ FE - t=1.01e-05s einvm™'

\/ N/

1000 1000
2000 2000
€ €
£ £
N 3000 N 3000

4000 4000
5000 5000
-6000 -4000 -2000 O 2000 4000 6000 -6000 -4000 -2000 O 2000 4000 6000
xinm xinm
FE - t=1.00e-04s ein Vrr;('110-“ - t=1.00e-04s ein Vn3( 10
v ’ °
6
1000 1000
4
2000 2000
E E
£ £
N 3000 N 3000
-2
4000 4000 -4
-6
5000 5000 s
-6000 -4000 -2000 O 2000 4000 6000 -6000 4000 -2000 2000 4000 6000
xinm xinm
FE -t = 1.00e-03s ein Vo FE - t = 1.00e-03s einVmlo®

zinm
zinm

-6000 -4000 -2000 O 2000 4000 6000 -6000 -4000 -2000 O 2000 4000 6000
xinm xinm
FE - t = 1.00e-02s einVmjo® FE - t = 1.00e-02s einVmYo®

1

0.5

zinm
[S)
zinm

-6000 -4000 -2000 0 2000 4000 6000 -6000 -4000 -2000 0 2000 4000 6000
xinm xinm

Figure 5: Cross-sections of a homogeneous half-space model (left) and the model with a conductor (right).
These cross-sections were plotted to give a visual idea of how the fields advance in time. The common
initial configuration was omitted. We decided to plot the results of the FE simulation, but there was
hardly any visible difference compared to the FD solution. On the right we can nicely see how the
field gets captured inside the high conductivity structure and creates an anomaly compared to the
homogeneous case.

23. Schmucker-Weidelt-Kolloquium fur Elektromagnetische Tiefenforschung,
Heimvolkshochschule am Seddiner See, 28 September - 2 Oktober 2009
23



Default grid Refined grid
Method Solve  Other  Solve  Other
FD, time stepping, classical upward continuation 31.7s < 0.1s 171.8s < 0.1s
FD, time stepping, matrix upward continuation 8.6 0.9s 98.4s 2.7s

FE, rational Krylov 3.6 0.6s 19.4s 1.9s
FE, rational Krylov, mass lumping 3.1s 0.6s 17.7s 1.9s
FE, rational Krylov, UMFPACK 1.9s 0.6s 10.4s 1.9s

FE, rational Krylov, mass lumping, UMFPACK 1.4s 0.6s 7.7s 1.9s

Table 1: Computation times for the default grid and one, that was obtained from this with regular refinement.
The column Solve denotes the time spent for performing the integration in time, while the column
Other lists the time spent in setting up the boundary condition and the computation of field values
from the solution vectors in case of the FE method. Other setup times are not shown. The advantage
of FE-based methods can be clearly seen.

5 Conclusions

We were able to leverage several state-of-the-art techniques to create a combined efficient forward
modeling code that is significantly faster than traditional codes. We have also seen that we don’t have
to make sacrifices regarding the accuracy of those computations. This was already achieved by using
the mesh from the finite difference discretization, which was helpful for comparison, but which also
has many limitations due to its regular structure. An unstructured grid—properly adapted to the
problem—could be used to further increase accuracy or speed.

We are working on creating a similar framework for the three-dimensional time domain TEM problem.
All of the methods and tools are already existing or have a straightforward extension to 3D. Given the
results from 2D we expect an even greater speed-up when applying this to three dimensions.
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