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1. Introduction

The Controlled Source Electromagnetic Method (CSEM) has recently found some interest
in off-shore hydrocarbon exploration: An electric dipole with a transient or low-frequency
continuous wave excitation is towed over an array of seafloor receivers measuring the electric
and/or magnetic field. The target is a deep resistive layer as possible indicator for the presence
of a hydrocarbon reservoir. The present study is confined to continuous wave excitation (with
a typical frequency of 0.5 Hz) and to electric field data. A more detailed presentation of the
CSEM results is given by Weidelt (2007).

Standard model of marine CSEM

z = 0

z = 1000 m

z = 2000 m

z = 2100 m

σ0 = 0: Air

σ1 = 3 S/m: Ocean

σ2 = 1 S/m: Seafloor

σ3 = 0.01 S/m: Reservoir

σ4 = 1 S/m: Sediments
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Frequency f = 0.5 Hz

Ways of energy propagation between TX and RX:

• direct

• along air-earth interface (‘airwave’)
• resistive layer mode

Figure 1: Experimental setup and standard conductivity model for CSEM. The receiver TX
measures the electric field. Used is both the inline configuration (as shown) and the broadside
configuration with RX parallel to TX, but off the plane on the y-axis.

It turns out that the model shown in Fig. 1 has much in common with the resistive-layer
distortion of the electric field in magnetotellurics (MT) due to the presence of a conducting
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Figure 2: Energy flow density (Poynting vector) in two orthogonal planes
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laterally nonuniform conductivity anomaly. Here the electric field can attain its asymptotic
layered-earth values only at a very great distance from the anomaly. This distance is the
so-called adjustment distance. It will be briefly discussed in Sect. 5.

For the representative model of Fig. 1, the time-averaged energy flow density (= Poynting
vector) is shown in Fig. 2, both in the plane containing the horizontal electric dipole (top) and
in the plane orthogonal to it (bottom) in Fig. 2.

The time averaged real Poynting vector

S :=
1

2
Re(E × H∗)

reads in the (x, z)-plane at y = 0 (top of Fig. 2):

Sx = −1

2
Re(EzH

∗

y ), Sz = +
1

2
Re(ExH∗

y )

and in the (y, z)-plane at x = 0 (bottom of Fig. 2):

Sy = −1

2
Re(ExH∗

z ), Sz = +
1

2
Re(ExH∗

y ).

Of relevance for the physics of CSEM and the interpretation of seafloor data are two guided
waves, namely the airwave and the resistive-layer mode:

• Airwave

The airwave is guided at the air-ocean interface with a decay ∼ 1/r3 for great TX-RX
separations r. In Fig. 2 the airwave is dominant, where close to the interface the flow of
energy is vertical. For shallow water depth the strong airwave masks the signal from the
target layer. The airwave is a TE-mode. In marine CSEM it has to be considered as noise.

• Resistive-layer mode

This exponentially decaying mode (typical decay length 1700 m) is seen only in the plane
containing the dipole (Fig. 2, top). It is associated with a strong horizontal energy flow,
carried in the resistive layer by Hy and the strong component Ez. It is a TM-mode and
contains the useful signal.

2. The airwave

In the sequel cylindrical coordinates (r, ϕ, z) are used. Attention is confined to the ‘inline
configuration’, i.e. to the measurement of the radial component Er in direction of the electric
dipole. Moreover, the field is normalized with the current moment p of the dipole. Fig. 3
displays the modulus of Er(r)/p as a function of the TX-RX separation r for various depths
d1 of the sea water. In this log-log plot the airwave with its 1/r3-decay is easily visible as a
straight line section in the farfield. The resistive-layer mode is clearly visible only at the great
water depth d1 =1000 m as the concave feature in the range 1 km< r <10 km; for shallower
depth it is partly masked by the airwave.

For a 1D conductivity distribution σ(z) > 0 in z > 0 with source at depth z0, receiver at depth z,
angular frequency ω = 2πf and current moment p, the leading term of the airwave is given by

Eair
r (r) =

iωμ0 p cos ϕ

2πr3 · e(z) e(z0)

[ e′(0) ]2
, Eair

ϕ (r) =
iωμ0 p sin ϕ

πr3 · e(z) e(z0)

[ e′(0) ]2
(1)
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where e(z) is the downward diffusing solution of

e′′(z) = iωμ0σ(z) e(z). (2)

Physically, e(z) is the electric field in 1D magnetotellurics.

Figure 3: Radial component Er of the electric field, normalized with the current moment p
of the electric dipole for various water depths d1. Conductivity model of Fig. 1 with frequency
f = 0.5 Hz.

The complete representation of the radial component Er of a grounded horizontal electric dipole
with TX at r0 and RX at r in cylindrical coordinates (r, ϕ, z) is

Er(r) =

∫
∞

0
[Qe(z|z0, κ) (1/r) + Qm(z|z0, κ) ∂r ]J1(κr) dκ cos ϕ, (3)

where Qe and Qm describe, respectively, the contributions from TE- and the TM-mode. It is
shown in Weidelt (2007)

• that due to the presence of the air-halfspace the TE-mode decays in powers of 1/r and

• that the TM-mode decays exponentially.
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Figure 4: Subtraction of the leading airwave term from the data shown in Fig. 3. Now the
resistive-layer mode becomes visible for all water depths d1. The subtraction removes only
the farfield with its 1/r3-decay, higher order terms ∼ 1/r5 evolve for r > 20 km. Air-ocean
reflections with exponential decay, occurring at intermediate separations, are not eliminated.

The leading 1/r3 TE-mode term was given above. After the removal of the 1/r3 term, an
asymptotic 1/r5-term appears, etc. The complete airwave removes all algebraic asymptotic
terms ∼ 1/r2n+1 (see Fig. 5) and can be described in terms of the TE-mode: If the TE-mode
part of Er is given by

Eer(r) =

∫
∞

0
Qe(z|z0, κ)J1(κr) dκ,

then the complete airwave reads

Eair
r (r) =

1

iπ

∫
∞

0
[Qe(z|z0,+it) − Qe(z|z0,−it) ]K1(tr) dt, (4)

with J1(·) and K1(·) as Bessel functions in conventional notation.
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.

Figure 5: Subtraction of the complete airwave. The remainder approaches the exponentially
decaying resistive-layer mode, see the blue lines in Figs. 6 and 12 (in the latter figure mostly
coincident with the red line).

The successful removal of the airwave in Fig. 5 was possible only because we have assumed in
Eqs. (1) and (4) a knowledge of the conductivity σ(z). An approximate removal without recourse
to σ(z) is possible by observing in (1) that the leading term of the broadside configuration (Eϕ

at ϕ = 90◦) is twice as large as that of the inline configuration (Er at ϕ = 0◦). Therefore, the
quantity

Erem
r := Er(r, ϕ = 0◦) − (1/2)Eϕ(r, ϕ = 90◦) (5)

is free of the leading term of the airwave. Since the signal from the resistive layer is not present
in the broadside component (see the bottom of Fig. 2), the difference field (5) is controlled in
the farfield by the resistive layer mode and therefore presents a good approximation to the field
obtained by removing the exact airwave (see Fig. 6).
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.

Figure 6: Approximate removal of the airwave according to Eq. (5). In the linear r-scale,
the asymptotic exponential decay is evident in the blue line (corresponding to the blue line in
Fig. 5).

3. The complex wavenumber plane

Usually, the field is obtained by superposing spectral terms with a real wavenumber κ in a
Bessel function integral [ as in (3) ]. However, the extension of this superposition to complex
wavenumbers clearly illuminates the nature of airwave and resistive-layer mode. If f(κ) satisfies
for real κ the symmetry f(κ) = f(−κ), the extension from the positive κ-halfline to the complex
upper κ-halfplane is performed via

∫
∞

0
f(κ)J1(κr) dκ =

f(0)

r
+

1

2

∫ +∞

−∞

∩f(κ)H
(1)
1 (κr) dκ,

where H
(1)
1 (·) is the Hankel function of first kind and first order. Above the indented real-line

contour in Fig. 7 this function is analytic and decays exponentially.
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Figure 7: Analytical properties of the Bessel function integral kernel in the complex wavenum-
ber plane. The full lines mark branch cuts. Inside the Earth the conductivity is assumed to
vary in the limits 0 < σmin ≤ σ(z) ≤ σmax < ∞. The branch points ik0 and iks (referring to the
limiting uniform halfspaces) and the endpoints ikmin and ikmax (referring to the limiting con-

ductivities) are given by κ = ik := (−1+ i)
√

ωμ0σ/2). The situation near κ = 0 is disentangled
by assigning to the air a small positive conductivity σ0 and considering the limit σ0 → 0+.

The analytical properties of the integration kernel allow to deform the original contour of
Fig. 7 to the contour shown in Fig. 8. This contour is of advantage, if highly precise farfield
data are required, since – apart from the airwave – only exponentially decaying terms are
summed, whereas the contour along the real axis obtains the farfield by the unstable proces
of destructive interference: For r → ∞ each path element gives a contribution decaying
exponentially ∼ exp[−rIm(κ)]. The TM-mode contour can be closed already along the path
Im(κ2) = −ωμ0σmin (see Fig. 7) and therefore, the TM-mode is a superposition of contributions
with a strict exponential decay. The critical point κ = 0 contributes only to the TE-mode,
where the resulting decay in powers of 1/r forms the airwave.

First principles of the computation in the complex wavenumber domain for TE-mode sources
are given by Kaufman & Keller (1983, p. 432-445) and Goldman (1990, Ch. 2).

The actual position of the poles in the complex κ-domain for the standard conductivity model
of Fig. 1 is shown in Fig. 9 for f = 0.5 Hz. The position of the poles is an intrinsic feature of
σ(z) and f and is independent of the position of source and receiver. The residual, however,
depends on the position.
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Figure 8: Deformation of the contour, originally confined to the real κ-axis (see Fig. 7), to
a contour surrounding the region of singularities in the complex κ-plane. Contrary to Fig. 7,
the air has again the conductivity σ0 = 0. For r → ∞ each path element gives a contribution
decaying exponentially ∼ exp[−rIm(κ) ]. The TM-mode contour can be closed already along
the path Im(κ2) = −ωμ0σmin (see Fig. 7), and therefore the TM-mode is a superposition of
contributions with a strict exponential decay. The critical point κ = 0 contributes only to the
TE-mode, where the resulting algebraic decay in powers of 1/r forms the airwave.

Signatures of guided waves in the complex wavenumber plane are

• The ‘airwave branch’ (see Fig. 7) along the positive imaginary axis: The integral along
both banks of the branch gives the complete pure airwave (4), considered as noise in marine
CSEM.

• The resistive-layer pole κr: the residual at this point gives the resistive-layer mode, which
is the signal of the target.
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Figure 9: Actual position of the poles for the standard conductivity model of Fig. 1 in the
complex plane κ = u+iv. The frequency is f = 0.5 Hz. Only the first six of an infinite number of
TM-mode poles are shown. They describe highly damped reflections between air-ocean interface
and the resistive layer. Also shown is the resistive-layer pole κr, an isolated TM-mode pole (close
to the origin), which is responsible for the resistive-layer mode. – Note the different scales in u-
and v-direction.

4. The resistive-layer mode

For general κ, the differential equation for the spectral TM-mode potential fm(z, κ),

σ(z)[ f ′

m(z)/σ(z) ]′ = [κ2 + iωμ0σ(z) ]fm(z)

has as two linearly independent solutions an upward propagating solution fm(z) =: fma(z)
vanishing for z → 0 and a downward propagating solution fm(z) =: fmb(z) vanishing for z → ∞.
At the poles of the TM-mode integral kernels, e.g. at κ = κr, the solutions become linearly

dependent, such that
fma(z, κr) = fmb(z, κr) =: fmr(z)

is an eigensolution, which decays for z → 0 and for z → ∞. This particular eigensolution, with
its peak amplitude in the resistive layer, is the resistive-layer mode. It is displayed in Fig. 10.
Physically, fm(z, k) is proportional to the spectral vertical current density Jz(z, κ) [ therefore
fma(0, κ) = 0 ].
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Figure 10: The eigensolution fmr(z) of the resistive-layer mode for the standard conductivity
model of Fig. 1. The slope discontinuities at z = 1 km mark the seafloor.

.

Figure 11: The transition from linear independence to linear dependence when approaching
κ = κr along a straight line from the origin κ = 0. The dotted lines mark the layer boundaries.
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The resistive-layer pole lies at

κr = (−2.788726 + i 5.831761) · 10−4m−1,

corresponding to a scale length of

Lr = 1/Im(κr) = 1714.75 m.

The resistive-layer mode Erlm
r (r), which is the residual at κr, is shown in Fig. 12 as the red line.

Apart from a factor, independent of the position of TX and RX, it is given by

Erlm
r (r) ∼ f ′

mr(z)f ′

mr(z0)

σ(z)σ(z0)
· ∂rH

(1)
1 (κr r) cos ϕ.

Figure 12: The blue line (coinciding in the farfield with the red line) represents the same
information as the blue lines in Figs. 5 and 6. In the linear r-scale the asymptotic exponential
character becomes obvious. The farfield agreement with the resistive-layer mode (red line) shows
that the latter provides an excellent farfield approximation of Er freed from the airwave. After
the removal of the airwave, the distinction from a model without the resistive layer becomes
easily possible.
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5. The adjustment distance in MT

If σ(z) > 0 in z > 0, all horizontal components of the electric and magnetic field decay at great
separations r between TX and RX for magnetic dipoles (HMD and VMD) and for horizontal
electric dipoles ∼ 1/r3. Therefore the surface impedance as ratio beqween orhogonal components
of E and H tends at great separations to the plane-wave limit. The scale length lor reaching this
limit is the adjustment distance La. In general, La is in the order of the modulus Scmucker’s
complex inductive scale length c(ω), defined for a layered earth as

c(ω) := c(0, ω) and c(z, ω) := −Eh(z, ω)/E′

h(z, ω).

Here Eh is a horizontal electric field component. There is a notable exception, however, where
the farfield will start at considerably greater separations. This is – in the simplest case – a three-
layered earth with a (thick) resistive layer sandwiched between a (thin) conductive overburden
and a conductive substratum. The corresponding conductivity model is shown in Fig. 13.

Adjustment distance: Typical conductivity model

� �

TX
z = 0

z = zu

z = zd

↑|
du

|↓
↑|
|
||
dr

||
|
|↓

Conductor:

Resistor:

Conductor:

σ(z) = σu, Su := σu du

σ(z) = σr, Tr := dr/σr

σ(z) = σd
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DC-estimate of adjustment distance (Ranganayaki & Madden 1980):

La ≈
√

Su Tr

Inductive estimate of adjustment distance (Fainberg & Singer 1987):

La =
1

Im(κa)
≈

√
Su Tr

Re
√

cu/c
≤

√
Su Tr

κ2

a
≈ − cu/c

Su Tr

Figure 13: Conductivity model and experimental setup, in which the plane-wave impedance
is reached only at great separations, essentially due to 2D propagation at small and moderate
separations.
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Figure 14: Horizontal electric and magnetic field components of a HED, normalised with their
asymptotic values (superscript as) decaying ∼ 1/r3 (= airwave). Because of the 1/r2-decay
of Eφ and Er at small and intermediate separations, the normalized values of the electric field
components increase with r up to r ≈ La and then sharply decrease because of the exponential
decay of the TM-mode part.

The source is a HED in or on the conductive overburden. Due to the galvanic contact, the cur-
rents are at small and moderate distances confined to the conductive overburden. The reduced
dimensionality leads to TM-mode electric dipole fields decaying first only ∼ 1/r2. At greater
separations the vertical electric currents of the source dipole will penetrate the resistive central
layer. When sensing the conductive substratum, the TM-mode currents decay exponentially
rather than ∼ 1/r2. This exponential TM-mode decay is valid under the assumption that
σ(z) > 0 in z > 0. If this condition is violated by a perfectly insulating intermediate layer,
the 1/r2-decay of the TM-mode field would perpetuate for all separations. If this condition is
satisfied only marginally by a (highly) resistive intermediate layer, the exponential decay would
be present, but would start at great separation, which is quantified by the adjustment distance

La. The galvanic currents will stay the longer in the conductive overburden the better the
overburden conductivity σu and the smaller the resistive-layer conductivity σr. At separations
r � La, the TM-mode electric field has diappeared and TE-mode part, decaying always ∼ 1/r3,
will prevail.

The consideration of the adjustment distance will certainly be relevant for Controlled Source
Audio Magnetotellurics (CSAMT) over a conductivity structure of the type sketched in Fig. 13.
Moreover, the adjustment distance plays also a role in ordinary MT, since the anomalous electric
fields caused by lateral conductivity heterogeneities can be represented as a superposition
of HED fields with sources in the anomalous domain and with amplitudes controlled by the
conductivity contrast.
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For MT the first estimate of La was given by Ranganayaki & Madden (1980), who showed that

La ≈
√

Su Tr, (6)

where Su := σu zu is the conductance of the overburden and Tr := dr/σr is the integrated
resistivity of the intermediate layer (see Fig. 13). The simple and useful estimate (6) reflects
already correctly the dependence on σu and σr as anticipated above. It is a direct current
approximation, which does not yet take induction into account. This was first achieved in the
approximation of Fainberg & Singer (1987), who relate La to the TM-mode pole κa with the
smallest imaginary part. This pole is approximately positioned at

κ2
a ≈ − cu/c

Su Tr

, (7)

such the exponential radial decay ∼ exp[−rIm(κa) ] yields

La =
1

Im(κa)
≈

√
Su Tr

Re
√

cu/c
. (8)

Here c and cu are the inductive scale lengths at z = 0 and z = zu, respectively. Approximately
we have

cu/c ≈ 1 + iωμ0 Su cu. (9)

Since Im(cu) < 0, Eq. (9) implies Re
√

cu/c ≥ 1. Therefore the consideration of induction
according to (8) and (9) leads to a reduction of the DC estimate (6). A numerical example will
be given below.

The adjustment distance is illustrated in the simple example of Fig. 14. The source is a HED at
z = 0. The left panel shows the broadside configuration (with bipoles of TX and RX pointing
into the figure) and the right panel shows the inline configuration (with TX and RX bipoles
in the plane of the figure). The field components are normalized by their asymptotic farfield
values, denoted by the superscript as. Up to separations r ≈ La, the normalized electric field
increases with r because E is dominated by the TM-mode part decreasing ∼ 1/r2, whereas
Eas ∼ 1/r3. For r > La, the exponential decrease of the TM-mode leads to a sharp decrease of
E, which passes through a pronounced minimum before it is well presented by its asymptotic
values. In the present model, Eφ and Er reach the asymptotic regime only for r ≈ 40|c| and
r ≈ 50|c|, respectively. Shown are also the corresponding normalized apparent resistivities
�a/�

as
a . The reason for the pronounced minimum will be discussed below.

In the present example, the DC estimate (6) yields La/|c| = 11.31. The reduction of this
estimate due to induction is remarkable: The Fainberg-Singer estimate gives La/|c| = 5.61,
which is not too different from the true value La/|c| = 5.92, obtained by exactly determining
the κa as the pole with the smalles imaginay part (see Fig. 15).

Taking again the model of Fig. 14 as an example, Fig. 15 shows both the exact locations of
the first six TM-mode poles and the line Im(κ2) = −ωμ0σr = −ωμ0σ2, on which the poles are
located for the case that the resistive layer is sandwiched between two perfect conductors. The
separation of poles decreases for increasing thickness dr of the resistive layer and increases for
decreasing thickness. Therefore, only the single pole κr is present in the marine CSEM model
with a thin resistive layer (see Fig. 9). Fig. 15 shows also the first six poles of an infinite sequence
of TE-mode poles. In particular the TE-mode pole with the smallest imaginary part plays a
role for the decay of the E-field at intermediate distances, but finally the leading TE-mode term
from the airwave branch will dominate the pole contributions.
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Figure 15: TM- and TE-mode poles for the conductivity model assumed in Fig. 14 and repeated
here for convenience. The TM-mode pole κa gives rise to the adjustment distance La = 1/Imκa.
The line Im(κ2) = −ωμ0σ2 corresponds to the line Im(κ2) = −ωμ0σmin in Fig. 7. Note the
different scales in u- and v-direction.

At the pronounced |Er|-minimum at r/|c| ≈ 26, the contributions from TE- and TM-mode are

approximately of the same size, but of different sign, E
(e)
r /E

(m)
r = −1.053 + i 0.068, such that

the contributions almost annihilate.

The tertium comparationis between the resistive-layer mode in CSEM and the adjustment dis-
tance in MT is a resistive layer sandwiched beween two conductive layers, which in both cases
gives rise to pronounced energy propagation in the resistor with well-defined long decay length
Lr and La. Both scale lengths are associated with a TM-mode pole close to the origin κ = 0.
The airwave in CSEM corresponds to the asymptotic behaviour of the MT fields. Whereas
unwanted noise CSEM, the asymptotic field provides a safe reference in MT.
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Facit

• The contribution discusses the relevant guided waves in marine CSEM with restriction to
frequency sources and electric fields for 1D conductivity models. The emphasis lies on
fundamental principles rather than on practice orientation. The results are given without
an attempt of an explicit derivation.

• A simple general expression is given for the leading term of the airwave for an arbitrary
1D conductivity distribution.

• Working in the complex wavenumber domain and locating poles and branch points allows

– to isolate the complete airwave and the resistive-layer mode;

– to compute highly precise farfield data;

– to infer immediately that TM-mode contributions will decay exponentially, wheras
TE-mode contributions may show a decay in powers of 1/r;

– to quantify decay lengths of individual field components.

• Fig. 12 shows that – for a representative model – the superposition of airwave and resistive-
layer mode provides an excellent description of the electric field over a wide range of
separations.

• For the model with a sandwiched resistor between conductors, an intimate connection is
established between between CSEM and MT, where the TM-mode pole with the smallest
imaginary part defines the appropriate scale length of radial decay. This is strictly valid
only for CSAMT, but is of relevance also for the anomalous fields of lateral conductivity
anomalies generated by plane-wave sources (as assumed in MT).
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