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1.  The linearization of the EM inverse problem 

We assume that electromagnetic (EM) response estimates are available for a set of discrete 
frequencies n� , in case of 2D or 3D interpretations also for various field sites at surface 
locations )0,,(x� yr . Cartesian coordinates are used, with z positive down. To be found are 
models of conductivity or resistivity within a modelling domain A in the lower half-space. 
Regardless of their specific nature, the complex-valued estimates will be denoted with )(ryn

and called henceforth the datum, with )(ryn�  as the stochastic error of its absolute value. Let 
the model generate the theoretical datum )((mod) ryn  for the same frequency and location. Then 
the difference �)(ryn� )(ryn )((mod) ryn�  represents the misfit residual for the respective 
datum and model, with 

|2 ��y� �2|)(ryn�                                                                                        (1) 

as mean squared residual, when < > implies an average over all data. Let correspondingly 

����� 22 )(ryy n                                                                                         (2) 

be the mean squared data error. Then the interpretation will be regarded to be within error 
limits, when y�  and  are equal. Data of very uneven quality should be weighted with their 
reciprocal rms errors 

y�

ny�  prior to their interpretation. 

A functional  shall connect datum and model in nF )((mod) ryn ),|( rxFn� , depending on the 
entire model in A,. It can be an algorithm or for example a numerical FD solution. A 
frequently used interpretation method, based on a Taylor expansion of a starting model, 
converts the non-linear inverse problem into an approximated linear problem with the aid of 
derivatives . Its solution leads to successive model improvements x		Fn / )'(rx�  as they 
follow from the misfit residuals )(ryn�  for the model in the foregoing iteration or the starting 
model, yielding a better fit to the data. Here we shall adopt a different approach by 
formulating the forward problem as an integral equation with an integrand which is 
decomposed into a known data kernel )',|( rrxKn  and an unknown model parameter )'(rx  at 
the internal point 'r , in the1D  case for example the logarithm of resistivity:      

n
A

mn yrdrxrrxKry �
�� � ')'()',|()( . (3)

The non-linearity of the inverse problem is preserved in the indicated model-dependence of 
the data kernel. The key point is now to define data and model for a data kernel, which 
depends only weakly on the model, and that a completely model-independent data kernel can 
be formulated to begin an iterative process, during which an entirely new model is derived in 
each iteration rather than stepwise model improvements. 
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2.  The iterative process of modelling and its inherent problems

The process is initiated not with a preconceived starting model as it is usually done, but with 
an approximated starting kernel )',()0( rrKn  which is model-independent. It replaces in eq. (3) 
the data kernel )',|( rrxKn  for the not yet known model )'(rx . Solving then this equation 
toward the model parameters leads to a data-derived starting model )'()0( rx . It is used to 
calculate a now model-dependent data kernel )',|( )0()1( rrxKn , which may or may not be closer 
to the data kernel for the final model. Eq. (3) is solved again with this kernel towards a second 
model )'()1( rx , and so on. If iterations converge, data kernels and models become more and 
more consistent with each other, and the process can be terminated, when the change of 
models and kernels between consecutive iterations is below chosen thresholds..

The advantages are twofold. (i) Because models follow directly from the data and not from 
misfit residuals, data errors are readily converted into model errors as shown in the next 
section.. (ii) For the same reason the model resolution can be quantified in terms of a 
resolution kernel. Due to the limited number of error-bearing data, the obtained model 
parameters have to be understood in general as spatial mean values )'( krx  of the “true” model 
in some neighbourhood of an internal point �'r kr '  according to

')(),'()( rdrxrrarx
A

kk � �  ,                                                                           (4)

with )','( rra k  as resolution kernel for the so-called target point kr ' . The closeness of 
)','( rra k  to a delta- function for a perfect resolution expresses the achieved degree of 

resolution at the target point. Measures of resolution are  

�� )'( kr '])''(),'([ 2 rdrrrra k
A

k ��� �                                                            (5a)

or, with )','( rrJ k as “anti-delta-function, the Backus-Gilbert spread

�� )'( kr ')','()','( 2 rdrrJrra kk
A
�  .                                                                  (5b) 

The smaller these measures, the better the model resolution around the target point. 

Problems which may arise in the course of the above described iterative process are likewise 
twofold. Firstly, the iterative process will not converge, when the approximated starting 
kernel )',()0( rrKn  is too different from the kernels in the following iterations. In that case 
iterations should be started with the kernel for a preconceived model which can be thought to 
be closer to the final model. Secondly, in 2D and 3D interpretations conductivity or resistivity 
may turn negative. Such non-physical results can be encountered when interpreting error-
bearing data which are inconsistent with any model, or when the data base is too small for the 
chosen complexity of the model. In principle negative values can be avoided by increased 
smoothing of the model by stronger regularisation, but on the expense that the misfit residuals 
may become too large in comparison to the data errors. Obviously, the second problem does 
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not exists when the logarithm of conductivity or resistivity serves as model parameter, as it is 
the case here for 1D interpretations, and which is common practice for  interpretations based 
on incremental improvements of a starting model.  

The iterative process has to be interrupted, when one or more model parameters attain a non-
physical value, and an intermediate iterative process is conducted in the form of an algorithm 
described by Lawson & Hanson (1974, Section 23.3). Its purpose is to solve linear problems 
by least squares under side conditions in the form of inequalities, for example that no discrete 
model parameter  may be smaller than a specified threshold value . After completion the 
algorithm assigns the model parameters to two classes. The first class contains all parameters 
with  and  as least squares condition, when Q denotes the squared 
residual norm. Parameters assigned to the second class have values at the lower limit and 
exclusively positive derivatives . Hence, their increase beyond  increases Q and
thereby leads to a poorer than least squares fit to the data. Consequences for model 
interpretations will be one of the topics in Section 8.. 

mx

	

Lx

lLm xx � mxQ 	/ 0�

mxQ /	 Lx

Kalscheuer & Pedersen (2007) have considered in similar ways modelling errors and the 
resolution of 2D models, which have been obtained on the basis of derivatives of the 
functional and successive model improvements, as briefly outlined above. Their conclusions 
involve the following underlying assumptions. The model response  for the next to final 
iteration has to be regarded as error-free, which implies that the data errors are also the errors 
of the misfit residuals in the last iteration, which lead to the final model. Correspondingly, the 
next to last model has to be regarded as error-free in order that the errors of the last model 
improvement as derived now from the data errors represent also the errors for the final model.  

�
ny

3.  The four modes of model derivation 

For clarity we consider in this section a modelling space which is subdivided into M uniform 
layers or grid cells with a constant discrete model parameter . Furthermore, the data are 
now numbered in sequence for frequency and field sites. If  is the number of frequencies 
and  the number of field sites, then the total number of data is . In the 
notations of eqs (1) and (3) the resulting linear system of N equations for M unknowns is 

mx

1N

2N 21 NNN ��

,                                                                                     (6) nm

M

m
nmn yxKy �
��

�1

                                                                                                                                         
for n=1,2,…,N and without explicitly expressing the model-dependence of the data kernel. Its 
general solution in terms of a spatially averaged model parameter for a chosen target layer or 
cell  iskm �

n

N

n
knk yhx �

�

�
1

,                                                                                                (7) 

while the model resolution for this layer or cell is expressed in correspondence to eq. /(4) by 

m

M

m
kmk xax �

�

�
1

                                                                                                 (8) 
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with the now discrete resolution coefficients  .The squared modelling error in terms of the 
solution coefficients  is 

kma

knh

2

1

22
n

N

n
knk yhx ��� �

�

  ,                                                                                          (9) 

as it is readily inferred from eq. (7) for statistically independent random data errors . We 
consider now the data kernel  in eq. (7) as element of an  data kernel matrix 

ny�

nmK MN * K
and the solution coefficient h  in eq. (8) as element of an  solution matrix kn N*M H , which 
represent the so-called pseudo-inverse of matrix K . Inserting  from eq. (6) into eq. (7) and 
combining then this equation with eq. (8) shows that the resolution coefficients are elements 
of an 

ny

MM *  resolution matrix KHA � .

We distinguish now between two models on the basis of global solution criteria, which 
involve either all data or all model parameters, and two models on the basis of local solution 
criteria in reference to the mean model at a specified target layer or grid cell. Standard models 
of the first kind are least squares models with 

TT KKKH 1)( �� ,                                                                                      (10) 

which minimise the sum of all squared misfit residuals , and minimum norm models with 2
ny�

1)( �� TT KKKH                                                                                        (11) 

which minimise the sum of all squared model parameters  under the side condition that the 
model accounts for the data with zero misfit residuals. As a rule, either model may explain the 
data too well, in case of the minimum norm model that is obviously always so for error-
bearing data. In addition the matrices 

2
mx

KK T  and TKK  usually are ill-conditioned for 
inversion. Therefore a stabilised pseudo-inverse of matrix K  is in common use according to 

�
� � TT KKKH 12 )( � 12 )( �
�TT KKK .                                              (12) 

Interpretations on its basis lead to “regularized”  models, which neither yield the best possible 
fir to the data nor do they provide the smoothed possible model with zero misfit residuals. 
This trade-off between model fit and model smoothness is controlled by Tikhonov’s 
regularisation parameter . See Protokoll EMTF Kolloquium Wohldenberg”, p. 88-89, 
(2005), how to conduct an efficient search for an appropriate value of , providing equality 
of

2�
2�

y�  and  from eqs (1) and (2) for an interpretation within error limits. y�

Models based on local criteria minimise either the resolution measures of eqs (5) or the 
squared model error 

k�
2
kx�  according to eq. (9). Since in the first case model errors become 

unacceptably large and in the second case the same applies to the poorness of the resolution, 
the minimum of a linear combination of k�  and 2

kx�  leads to the here indispensable trade-off  
between model resolution and model accuracy. There are no established rules how to conduct 
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this Backus-Gilbert second trade-off. In the above cited reference it is suggested to adjust the 
trade-off that the regularized model has the same error for the respective target layer or cell.  

4.   1D interpretations 

The foregoing sections have presented the basic ideas behind our treatment of the non-linear 
inverse problem. We turn now to their implementation when interpreting data of increasing 
complexity. As in the first two sections we return to spatially continuous models, but it is 
clear that in practical applications, as they will follow in Section 7, the models will be 
subdivided again into uniform domains and represented by sets of discrete model parameters. 

Starting with 1D model, they are derived from the surface response at a single site, i.e. from 
the impedance )( nZ �  for a quasi-uniform inducing field. The functional  will be the nF � -
algorithm. See the Protokoll EMTF Kolloquium Wohldenberg, p. 85-87, (2005) for a 
description of this algorithm. Its key property is that it allows a straightforward decomposition 
of the integrand of the basic integral equation into a to second order model-independent data 
kernel, connecting the logarithm of the impedance with the logarithm of resistivity. Hence, 
the 1D version eq. (3) is 

                                                              (13).nnn ydzzxzxKy �
�� �
�

')'()',0|(
0

with
)}(/)(ln{ 0 nnn ZZy ��� )](4/[2}/)(ln{ 0 nna i ������ �
�  ,              (13a) 

as datum, 
}/)'(ln{)'( 0�� zzx �                                                                                    (13b)

as model parameter and    

                                                                                (13c) }'2exp{2)',0()0( zzK nnn ���

as model-independent approximated data kernel, where 00 / ���� nn �  ; 0�  is an arbitrary 

scaling resistivity and 000 /)( ���� nn iZ �  the surface impedance of a uniform half-space of 

resistivity 0� , while a�
2

0 |)(|/ nn Z ��� ��  and � )}(arg{ nZ ��  are apparent resistivity and
phase in their usual definitions.

The depth  is not the real depth z, however, but a conductivity-weighted depth 'z

zdzzz
z

ˆ)ˆ(/)('
0

0�� ��  .                                                                                   (14) 

This transformation of )(z�  into )'(z�  expands low resistivity sections with 0)( �� �z  and 
thus strong attenuation of the downward diffusing EM field, while it compresses high 
resistivity sections with 0)( �� �z  and small attenuation, thus balancing the overall rate of  
downward attenuation. When in practice a layered model concept is used, with  denoting md
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the thickness of the m-th layer in real depth, then eq. (14) implies that 00 // �� dd mm �  is 
the same for all layers, when )'(z�  is equally subdivide into constant depth increments 
above a concluding uniform half-space. Once the layer resistivities have been determined, the 
model in true depth is readily reconstructed from 

0d

00 / ��mm dd �  , noting that in this way 
layer thicknesses are not part of the interpretation. For a quasi-continuous model with many 
layers, the specific choice of  is practically without influence, since any resistivity 
distribution can be approximated with a sufficiently finely subdivided model. If the model 
consists, however, only of a few layers to keep the solution with 

0d

NM ��  closely to a least 
squares solution, then the choice of  matters and it should be optimized to obtain the best 
possible fit. Under certain circumstances it may be useful to relax the stringent relation from 
above between thickness and resistivity by introducing layer weights  in 

0d

mw

00 / ��mmm dwd � . They can be preset to place boundaries at the depth of seismic 
discontinuities, for example, or they are derived in a separate least squares analysis for a 
sequence of sedimentary strata of more or less known resistivity. 

The 1D version of eq. (5b) is 

                                                              (15) ')'','()'( 2

0

dzzzaz kkk ��� �
�

(z�

n

)' 0
2 Jz

with , and the resulting Backus-Gilbert spread can be regarded as the half-width of the 
resolution kernel on a  depth scale. In general it is sufficient to assess the resolution of 1D 
models with the uses of the approximated data kernel of eq. (13c), that is without reference to 
a specific model.. Furthermore, the integrals involved in the minimisation of the spread can be 
solved then in closed form. It has been found that their numerical integration with the use of 
mode-dependent data kernels leads more or less to the same results. See Protokoll EMFT 
Kolloquium Wohldenberg (2006) for demonstrations.  

120 �J
'z

5.   2D interpretations in E-polarisation 

The modelling space A will be the cross-section of a 2D structure in the (y,z) plane, striking in 
x-direction.. We assume induction by a quasi-uniform field with a linearly polarized electric 
vector in strike direction, and the data to be interpreted are the magneto-telluric impedances 
and the transfer functions of geomagnetic depth sounding (GDS), which have been derived 
from observations in a chain of field sites across the 2D structure. It is imbedded into a 
normal structure of conductivity )'(z�  which we presume to be known from 1D 
interpretations of the impedance nynx B/nZ E�  at a safe distance. To be found is 

)'()','()','( zzyzy na ��� ��  within A from the anomalous parts of the observed surface field 
in terms of their transfer functions. Omitting their non-existing dependencies on x and 
observing that for quasi-uniform fields is zero, these field components are nzB

)0(])([0,/)0,( nynxyxax BZyZyEyE )0() nzE� ����                                            (16) 

with  as E-polarisation impedance tensor element, and xyZ
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)0()()0()0,()0,( nyDnyyay BydByByB ���� , )0()()0,( nyDaz ByzyB ��          (17) 

with  and  as GDS transfer functions. Note that it is necessary in this context to relate 
the electric field as well as the two magnetic field components to the normal part of the 
horizontal magnetic surface field  as it would have been observed in the hypothetical 
absence of the 2D structure and which can be inferred from observations at a great distance.. 

Dd Dz

nyB

For the derivation of the integral equation to interpret these data, we start from the 2D forward 
problem in E-polarisation. With ),( zyr �  and )','(' zyr �  dependencies on x are omitted 
again, also dependencies on frequency are not expressed explicitly. Then according to the 
integral method the internal electric field follows for a given model and frequency from 

')'()'()',|()( )(
0 rdrrErrGirE axn

A

TE
nax ���� ���  ,                                        (18) 

where within the normal structure is assumed to be known and with  as Green’s 
function for E-polarisation. It connects an oscillating electric line current in x-direction, 
passing through 

)'(zEnx
)(TEG

'r , with the electric field which it generates in the same direction at r . The 
sole dependence of  on the normal structure is indicated with )(TEG n�  among its arguments. 
Cf. Aarhus Lecture Notes, p.42 (1975). Since this structure is known, we presume the same 
for Green’s function. Details about their derivation can also be found in the cited reference 
and in Vorlesungs-Skript 1992/93, Blatt 17-20. 

We assume that )'(rEx  within A has been determined, either by solving eq. (18) or by another 
method of forward modelling. Then the 2D version of eq. (3) to interpret  as datum 
follows from eq. (18) readily as

ayE

')'()'()';0,|()0,( )(
0 rdrrEryGiyE axn

A

TE
nax ���� ��� )0,(yEax�
  .                 (19a) 

For a corresponding derivation of integral equations for the anomalous magnetic field as 
datum, we note that according to Faraday’s law zEiB axnay 		�� /�  and yEiB axnaz 		
� /�
when , and that in the integrand of eq. (18) only Green’s function depends on the 
field point coordinates. Denoting with subscripts their respective derivative for ,  these 
equations follow in the same way from eq.(18) as 

0�� azay EE
0�z

')'()'()';0,|()0,( )(
0 rdrrEryGyB axn

A

TE
zay ��� �
� )0,(yBay�
  ,                 (19b) 

')'()'()';0,|()0,( )(
0 rdrrEryGyB axn

A

TE
yaz ��� ��� )0,(yBaz�
  .                  (19c) 

 Evidently the anomalous part of the conductivity, preferably in the dimensionless form 

)'(/)'()'( zrrS na ��� ,                                                                                  (20) 
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is a natural choice for a model parameter, which identifies the product of Green’s function 
times )'(zn�  with the internal electric field  as data kernel.  The latter consists of a known 
normal part  and an initially unknown anomalous part , which when ignored 
defines the model-independent data kernel for the derivation of the starting model. The 
iterative evaluation of eqs (19) follows then the same general path as outlined in Section 2. 
There are three data sets to choose from, which can be used either alone or in combination.  

xE
)'(znxE )','( zyEax

The 2D version of eq. (5b) is 

���
A

k ar )'( ')''()''()','( 22
0

2 rdzzyyJrr kkk ���� ,                                              (21) 

yielding an areal measure of resolution. A circle with radius �/)'( kr� , drawn around the 

target point, visualizes the cross-section, over which the respective model parameter 
represents an average. 

6.   2D interpretations in B-polarisation 

The set-up of the model and field sites is the same as in the previous section, except that now 
the magnetic vector of the quasi-uniform inducing field is in strike direction. Since the 
magnetic surface field is without anomalous part and thereby without information about 
internal conditions, the sole field component available for interpretation is the horizontal 
component of the .electric surface field. In principle also its vertical component just below 
the surface could be used. It is not easily accessible to observations, however. We presume 
again that the normal conductivity structure with the 1D impedance  is known 
and thus base the interpretation on the anomalous part of given by

yE

nxnyn BEZ /��

yE

)0(])([)0()0,()0,( nxnyxnyyay BZyZEyEyE �
���                                             (22) 

with  as impedance tensor element for B-polarisation. yxZ

The simple boundary condition for the magnetic field conceals the forthcoming difficulties, 
which we shall face when deriving the integral equation for . They arise from the presence 
of up and down going currents within and around the anomalous cross-section, also from the 
presence of electric charges where the conductivity changes gradually or abruptly. Therefore 
the integral method is rarely used for solving the forward problem in B-polarisation, with such 
notable exemptions as Fluche’s thesis (1992). In the integral  takes the place of and
resistivity 

ayE

xB xE
�  the place of conductivity � .

Let in analogy to eq. (20) 

)'(/)'()'( zrrR na ���                                                                                      (23) 
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denote a dimensionless measure for the anomalous part of resistivity at the internal point 'r
and )(rR the same for the field point r . Then the integral equation for deriving )'(rBx for a 
known normal part  and model is)'(zBnx

)'()',|({)()()()](1[ )(
0 rRrrGizBrRrBrR n

TM

A
nnxax ���
�
 � ���

')'(}][)'( )( rdrBGgradRgradz x
TM

n ��
 �   .                         (24) 

Cf. Aarhus Lecture Notes, p 46-47 (1975). The complications against the corresponding 
equation in the case of E-polarisation are obvious. On the left appears in addition to the 
anomalous part  also its normal part. The first part of the integrand on the right resembles 
the integrand in eq. (18 ) for E-polarisation except that Green’s function for B-polarisation has 
to be used. Its connects a chain of oscillating magnetic dipoles in x-direction, passing through 
the internal point 

axB

'r , with the magnetic TM field it generates in the same direction at the field 
point r . Green’s function depends again solely on the known normal resistivity structure, as 
indicated, and we presume again that it has been derived beforehand for the involved set of 
points. Details about their actual determination can be found in the cited references in 
connection with eq. (18). Further complications arise when integrating over the second part. 
For a modelling cross-section subdivided into uniform grid cells this integration takes the 
form of integrals along cell boundaries and thereby accounts for accumulated charges on 
them. See the Appendix for details. 

Also the connection between the magnetic field and the electric field is not as straightforward 
as for E-polarisation. The now relevant Ampere’s law connects the spatial derivatives of the 
magnetic field with the current density �/yaynyy Ejjj �
�  rather than with the electric field 
itself. For  this law implies that 0�zB nynx jzB 0/ ��		  and ayoax jzB ��		 / , yielding

zBzBE nxaaxay 		
		� //0 ��� .                                                                     (25) 

We multiply now eq. (24) on both sides with )0( 
�zn�  and differentiate both side with 
respect to z at z=+0 just below the surface, assuming that 0/ �		 zR  for , i.e. that the 
topmost model is uniform in vertical direction. The result is 

0
�z

00 |)0,(|)0,('....)0( 
�
� 	
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Equating the expression on the right, divided by 0� , with  from eq. (25) leads in 
combination with eq. (24 ) for  to the integral equation for as datum. Thus the 2D 
version of eq. (3) for B-polarisation is 

)0,(yjay

ayE0
�z

)'()';0,|({/)0()0,( )(
00 rRryGiyE n

TM
z

A
nnay �
�
� � �����

')'(}][)'( )( rdrBGgradRgradz x
TM

zn ��
 �  )0,(yEay�
 .                        (26) 
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The subscript to Green’s function implies again differentiation with respect to z at 0
�z . In 
the numerical solution of eq. (26) further problems arise from the involvement of second 
derivatives of Green’s function in . They are overcome by integrations with 
Green’s function split into “transient” and “quasi-static” parts, as outlined in the Appendix. 

)/( )( zGgrad TM
z 		

The integral corresponds in its first part to eq. (19b) for  as datum, thereby suggesting in 
analogy

ayB
R  as the appropriate model parameter for B-polarisation. This choice defines for the 

first part the product of Green’s function and  as data kernel. It will be a special topic of 
the Appendix to show that also the second part of the integrand can be decomposed into a  
data kernel, involving the integrals along boundaries, and the same model parameter 

xB

)'(rR . In 
either case, the iterative process to solve eq. (26) towards this parameter will be initiated by 
replacing )'(rBx  with its normal value  for the derivation of a starting model. The 
definition of an areal measure of resolution will be the same as for E-polarisation in eq. (21). 

)'(zBnx

 Concluding herewith the sections on 2D interpretation, we note that the suggested different 
choices of model parameters for E- and B-polarisation exclude a joint inversion of both 
polarisations, at least within the framework of the here adopted method of interpretation. Only 
in the case of very moderate anomalies this may be possible We infer from eqs (20) and (23) 
that  or 1)1()1( �
�
 RS )1/( SSR 
�� . Thus, when S is small against unity for na �� �� ,
we can replace R  in eq. (26) by  and facilitate thereby a joint inversion. But in general it 
seems that the specific information contents of 2D observations will be more fully exploited 
by deriving conductivity models from E-polarisation data and resistivity models from B-
polarisation data. This distinction reflects the increased sensitivity of E-polarisation to 
interspersed good conductors due to the horizontal flow of induced currents, while vertical 
currents associated with B-polarisation account for their superior response to interspersed
resistors. 

S�

7.   3D interpretations – an outlook 

We assume that observations have been carried out in a network of field sites, and that for 
each site and a given polarisation MT impedances have been obtained for the two components 
of the electric field and GDS transfer functions for the three components of the anomalous 
magnetic field. The electric vector of a quasi-uniform inducing field shall be either in x-
direction or in y-direction, and in this way we shall distinguish between transfer functions for 
x- polarisation and y-polarisation. The datum for interpretation can be anyone of these ten 
transfer functions, either alone within the network of sites or in combination with others.  

As before far-away observation are assumed to have established  the conductivity for the 
normal structure, into which the 3D modelling space is embedded, yielding as
known 1D impedance for x-polarisation  and 

nynxn BEZ /�

nxnyn BEZ /��  as the same impedance for y-
polarisation. Hence, with )'(zn�  being known, the interpretation will be based on the 
anomalous parts of the electric and magnetic surface fields to determine )'(ra� . In terms of 
their transfer functions the anomalous field components to be interpreted are 

nynxynxxax BZZEEE ����� )( nyyyyay BZEE ���                                                      (27a) 

nyDxax BhBB ��� , nyDnyyay BdBBB ���� , nyDzaz BzBB ���
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for x-polarisation and

nxxxxax BZEE ��� , nxnyxnyyay BZZEEE �
��� )( ,                                (27b) 

nxHnxxax BhBBB ���� , nxHyay BdBB ��� , nxHzzaz BzBB ���

for y-polarisation, noting that for quasi-uniform inducing fields 0�nzB . It should be observed 
that once more all transfer functions are in reference to the normal horizontal magnetic field 
as it may have been observed at a great distance from the anomaly. This is an absolute 
requirement for the here proposed approach of interpretation. If for one reason or the other 
some nearby field site is chosen as a substitute, it is necessary to re-calculate the transfer 
functions repeatedly within the iterative process, using for their transformation the modelled 
GDS transfer functions of the reference site for  and .axB ayB

For objective reasons the 3D forward problem is commonly formulated in terms of the 
electric field. Within the framework of the integral method the extension from 2D and E-
polarisation to 3D implies that Green vectors 

iG zGyGxG iii ˆˆˆ 321 

�  for 3,2,1,( �ji ),, zyx

take the place of Green’s function, field vectors )'(zE  the place of  and the scalar product 
of these two vectors the place of the product of Green’s functi0on with . These 
modifications convert eq.  (18) into 

xE

xE

')(])(),|([)( 0 rdrrErrGirE ani
A

ia ��� � ����                                             (28) 

as basic equation for 3D modelling, from which follow then the integral equations  to interpret 
the various MT and GDS data. Cf. Aarhus Lecture Notes, p. 50 (1975). The components 
of the Green vector relate the electric field in i-direction at the field point 

ijG
r  to the causing 

electric dipole in j-direction at the internal point 'r . Since these components are determined 
again solely by the surrounding normal structure, we assume them to be known.  

Starting then with  at the Earth’s surface, we obtain from eq, (28) as the 3D version of eq. 
(3) for this datum  

axE

')()]();0,,|([)0,,( 0 rdrrEryxGiyxE anx
A

ax ��� � ���� )0,,( yxEax�
              (29) 

with a corresponding integral equation for . Thus the data kernel for ayE a�  as model 
parameter is given by the scalar product of Green vectors xG  or yG  with the internal electric 
field vector. 

Turning now to the integral equations for the components of the anomalous magnetic field, 
Faraday’s law implies that with 0// �		�		 yExE azaz  just below the Earth’s surface 
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Differentiating eq. (28) with respect to the field point coordinates affects again only the 
components of the Green vectors. Denoting with the added subscript their respective 
differentiation at , the integral equations for the three anomalous magnetic field 
components are  

0�z

')()]();0,,|([)0,,( 0 rdrrEryxGyxB anyz
A

ax ��� � ��� )0,,( yxBax�
  ,           (30a) 

')()]();0,,|([)0,,( 0 rdrrEryxGyxB anxz
A

ay �
� � ��� )0,,( yxBay�
 ,            (30b) 

')()](})';0,,|();0,,|({[)0,,( 0 rdrrEryxGryxGyxB anyxnxy
A

az ���� � ���� )0,,( yxBaz�
  . 

               (30c)
Depending on the polarisation, the components of the internal electric field vectors, as they 
appear in eqs (29 and (30), are 

)'()'()'( rEzErE axnxx 
�  , )'()'( rErE ayy �  , )'()'( rErE zaz �            (31a) 

for x-polarisation and 

)'()'( rErE axx �  , )'()'()'( rEzErE aynyy 
�  , )'()'( rErE zaz �             (31b) 

for y-polarisation. Their anomalous parts, which are initially unknown, are omitted when 
defining the model-independent data kernel to start iterations according to Section 2. A 3D 
volume measure of resolution follows from eq. (21) after adding  as factor to the 
integrand.  

2)'( xx �

So far 3D interpretations appear as a straightforward extension of 2D interpretations for E-
polarisation. But there exists a certain bias with regard to the resulting models. In 2D and E-
polarisation MT as well as GDS data belong to anomalous fields in the same TE mode and, as 
pointed out in the previous section, they will be particularly responsive to conducting regions 
in the Earth.  MT data in B-polarisation belong to an anomalous electric field which is 
exclusively in the TM mode. Their anomalous part is therefore more sensitive to resistive 
regions. In 3D, however, only GDS data represent surface fields in the TE mode and thus 
maintain their sensitivity to conductors, while MT data are related now to anomalous electric 
surface fields in both TE and TM modes. Consequently in their anomalous parts they should 
be less responsive to conducting regions than GDS data, but more responsive to resistive 
regions. Thus, the question arises, whether MT data in their anomalous parts can be split 
according to modes and then interpreted separately with either conductivity or resistivity 
models as in 2D. 

In concluding this section on 3D interpretations we explore ways and means to achieve the 
just stated separation. There are two options to do so. Firstly, the vertical electric field just 
above the Earth’s surface belongs exclusively to a TM-mode field in the air space It is 
difficult to observe, however, but this may not be necessary. In a closely spaced network of 
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field sites it should be possible to determine with sufficient accuracy the spatial derivatives of 
the horizontal electric components xEx 		 /  and yEy 		 / . Taking their sum eliminates their 
TE-mode portions and, because the remaining TM-mode portion belongs to a potential field, 

xEx 		 / 0|// ��	�	�		
 zzy zEyE .                                                                    (32) 

This expression will be particularly responsive to internal charge accumulations. Cf. Extended 
Abstract EM Induction Workshop Hyderabad (2004).  

In an alternative approach, based on Faraday’s law, the vertical magnetic component within a 
network of sites is converted into the TE-mode portion of the anomalous electric surface field, 
which when subtracted from the total anomalous field yields its TM-mode portion. Cf. 
Becken & Pedersen (2003) for details. In order to interpret the thus isolated TM-modes with 
resistivity models, one has to proceed from a formulation of the forward problem in terms of 
the magnetic field vector, which is never done. Recalling the encountered difficulties, when 
implementing this approach in 2D for B-polarisation, it is not clear, whether the mounting 
problems in an extension to 3D would be justified by a sufficiently improved response 
towards resistive regions in the Earth.  

8.    Exemplary 2D interpretations with synthetic data in both polarisations 

Since the Protokoll EMFT Kolloquium Wohldenberg (2006) contain numerous  examples for 
1D interpretations, this final section focuses on those in 2D. See also Schmucker (1993). First 
a short discourse is inserted to demonstrate that the occurrence of negative model 
conductivities or resistivities is not necessarily restricted to extraordinary situations. The 
model parameter 1// ��� nnaS ����  for E-polarisation or 1// ��� nnaR ����  for B-
polarisation obviously has a common lower limit of  1�  for non-negative conductivities or 
resistivities. 

Consider then a 2D model with two resistivities, m � 2001�  and m � 202� ,  embedded 
into a 1D structure with mn  �100� . With 1/ �� ��nS  in terms of resistivity we obtain  

5.01 ��S  ,    and0.42 
�S 0.11 
�R  , 8.02 ��R  . 

If then a data-derived model parameter for E-polarisation is uncertain by more than 0.5, either 
because of poor data quality or poor convergence of iterations, this could push  below its 
allowed lower limit. The Lawson-Hanson algorithm, as described in Section 1, would shift it 
back to  which renders the respective parts of the model as undistinguishable from a 
perfect resistor. In B-polarisation even uncertainties beyond 0.2 could invoke the Lawson-
Hanson algorithm to make other parts of the model to appear as perfectly conducting.. 

1S

11 ��S

This numerical example shows that even models with moderate resistivity contrasts may be 
partially un-resolvable in terms of finite resistivities or conductivities. If model parameters, 
which are below the allowed limit, do not disappear in the course of the iterative process, the 
final model has “holes”, where in E-polarisation the resistivity is too high to be 
distinguishable from a perfect resistor and in B-polarisation too low to be distinguishable 
from a perfect conductor.
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Now the interpretation of synthetic data, comprising in the case of E-polarisation MT 
impedances  and GDS transfer functions  and , while for B-polarisation the data set 
is restricted to MT impedances . The modelling space  is subdivided into eight grid cells 
of equal size with either  or 

xyZ Dd

m

Dz

yxZ
m 20  200 . To the left and right are laterally uniform 

sections of  and below a uniform half-space of m 100 m 10 . This normal structure is 
assumed to be known and thus not part of the forthcoming interpretation. Large dots mark the 
position of five hypothetical field sites, for which data sets have been calculated for two 
frequencies as indicated, adding 5% normally distributed random errors to each datum. Skin 
depths vary between 17.7 km for m 20  and 54.6 for m 200  at 1 cpm, and they are half as 
big for 4 cpm, indicating that the modelling space is reasonably well exposed to an attenuated 
downward diffusing field. 

Model          ----------! --------- !  ---------!  ----------! ----------! ---------
                                     |    200      |     200     |       20     |      20     |      Grid cells 5 x 10                   2km

�n� 100 � -----------� ----------� ----------- � -----------�m 
                                     |      20      |       20     |      200    |     200    |      
                       ---------- ----------� ----------� -----------� -----------� ---------�
                                                                   10 m cpmf 1� und cpm4

Since three field sites are positioned atop vertical boundaries, the synthetic B-polarisation data 
are the anomalous current densities  just below the surface, which are continuous across 
these boundaries. The following modelling results are regularized least squares models, for 
which a regularisation parameter has been determined, which lifts the mean misfit residuals to 
the level of the mean data errors, so that the data are interpreted within their error limits. With 
complex data for five field sites and two frequencies we have 

ayj

20�N  real data to determine 
 model parameters. 8�M

The selected model is rather complicated. In E-polarisation currents are concentrated on the 
left in the two bottom cells and on the right in the two top cells. B-polarisation currents which 
enter into the model from the left are first guided downwards to the conducting bottom section 
and then sharply bent upwards into the conducting top section on the right. Hence, we may 
expect charges of both signs to be accumulated on most boundaries, thus causing strong 
quasi-static contributions to the anomalous electric surface field  as outlined in the 
Appendix. We may guess that the conductors in the model are well perceived by E-
polarisation data, in particular on the right without overburden. But there will be problems 
with the resistive parts, particularly beneath a conducting overburden. B-polarisation data in 
contrast will be most responsive to the high resistivity sections, and it is not clear, to which 
extent they can recognize the conducting grid cells beneath a resistive cover on the left.

ayE

These expectations are verified by the outcome of the data interpretations as shown below. 
Numbers are the thereby obtained resistivities in m , with modelling errors below them in 
parenthesis Starting with the interpretation of E-polarisation data, we note correctly 
determined low resistivities in the top row to the right, while they appear as slightly 
overestimated on the bottom on the left, possibly due to a certain bias towards the high 
resistivities above. As to be expected, resistivities are largely underestimated in all resistive 
grid cells and here also with substantial uncertainties. This applies in particular to the cells in 
the bottom row on the right below a shielding conducing overburden. Comparing the quality 
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of these modelling results from MT and GDS data, there are no large differences except that 
results from GDS data seem to be of slightly superior quality.

                                                       E-Polarisation 

                   Eax ! ---------- ----------! ! -----------! ----------!
                                    |     154     |      54      |      22      |      22      |
                                    |    (160)    |    (18) |      (4)     |      (4)      |

-----------� ----------� -----------� -----------��
                                    |      34      |      30      |      35      |      39       | 
                                    |      (8)     |      (5)     |   (7)      |    (10)      | 

-----------� ----------� -----------� -----------��

                  Bay ! ---------- ----------! ! -----------! ----------!
                                    |     141     |     130      |      21      |      21      |
                                    |      (38)    |    (17)   |      (1)     |      (1)      |                              

-----------� ----------� -----------� -----------��
                                    |      26      |      27      |      55      |      97       | 

| (1)     |      (2)     |   (14)    |    (38)      | 
-----------� ----------� -----------� -----------��

                  Baz            ! ----------! ----------! -----------! ----------!
                                     |    156     |      158    |      21      |      21      | 
                                     |   (19)     |      (34)    |  (1)      |     (1)      | 

-----------� ----------� -----------� -----------��
                                     |     27       |      25     |     146     |     343     |
                                     |  (2)      |      (3) |    (109)   |    (608)    |

-----------� ----------� -----------� -----------��

                                                       B-Polarisation 

                   Jay ! ---------- ----------! ! -----------! ----------!
                                     |    228     |      200    |      43      |      11      | 
                                     |   (27)     |      (27)    | (16)     |    (15)      | 

-----------� ----------� -----------� -----------��
                                     |    0         |        3      |     197     |     201     |                                                                      
                                     |    (-)       |     (16)    |  (12)     |     (8)      |

-----------� ----------� -----------� -----------��

Turning to the modelling results from B-polarisation, here with  substituting as datum, 
it is impressive to observe that the high resistivity values are all correctly determined within 
error limits. Evidently a conducting overburden as on the right has no shielding effect upon a 
resistive section beneath it, quite in contrast to E-polarisation and possibly reflecting the 
diagnostic effect of charged boundaries. But as anticipated their resolving power for 
conductors is limited, in particular when they are in greater depth. In the first cell in the 
bottom row on the left the resistivity is not resolvable at all, i. e. this cell appears as a 
perfectly conducting hole in the final model.  

ayj ayE

Even though these models have been obtained without taking model resolution and model 
accuracy into account, it has been found that the Backus-Gilbert trade-off between them has 
been optimized in the sense that the resulting models have the same model fit as the 
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regularized least squares models and that they interpret also the data within error limits. 
Furthermore, the areal resolution measure of eq. (21) corresponds closely to the chosen size of 
grid cells. Thus, any finer subdivision of the modelling space into, say, 32 grid cells would 
not have improved the resolution and any then appearing details in the models would be 
insignificant, when errors are taken into account. 
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                 Appendix   Numerical and analytical integrations of integrals along     
                                                    grid cell boundaries in B-polarisation

The integral in eq. (24) contains in its second part the scalar product of  and 
;

Rgrad
)(TMGgrad naR �� /�  and differentiations are with respect to the internal point coordinates 

. In order to simplify notations, we omit for Green’s function references to their mode 
and to their dependence on 

)','( zy

n� , using subscripts to indicate derivatives, i. e. )',( rrGz stands
for zrrG n	 |( 	/)',� . We assume that the modelling space is equally subdivided into uniform 
rectangular grid cells with horizontal and vertical boundaries. Then [  reduces 
to  on horizontal and to '

]GgradRgrad �
'/ zG 	'/ zR 	�		 /'/ yGyR 		�		   on vertical boundaries. 

Let  denote the depth of the upper boundary of the i-th grid cell, which has  as model 
parameter, and let this boundary extend from 

iz iR

iyy �'  to hyy i 
�' , with  as width of  the 
grid cells. We place now this boundary into a narrow strip of width 

h
"2  and length  and h
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assume that R  changes within the strip with depth gradually from  for the grid cell above 
to . Then the contribution of this strip to the integral is given by 

1�iR

iR

'')','()',';(
'

)'( ' dydzzyBzyrG
z
Rz xz

y

y
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z
n
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�  . 

We observe that  and xB 'znG�  are continuous across the boundary, the latter as a measure for 
the vertical current. Then for 0�"
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hzh ,2/yBzhyrGzRR iixiizinii )(),2/,()()( '1                      (A1) # � � 
 
�

with a corresponding relations for the vertical boundary involving . Their summation over 
all boundaries finishes the numerical integration towards the internal magnetic field.  

'yG

In principle it would be possible to evaluate in the same way the second part of the integral in 
eq. (26) towards the anomalous electric surface field. But as to be seen a decisive portion of 
the integral should be solved analytically. We return to the upper boundary of the i-th grid cell 
and observe that also 'zznG�  will be continuous at horizontal boundaries. Then the 
contribution of this boundary to the integral is iii HRR )( 1�� in analogy to eq. (A1) with

 .                                           (A2) '),'(),';0,()( ' dyzyBzyyGzH ixi

hy

y
zzini

i

i

�



� �

Numbering the grid cells from top to bottom with ,.....2,1�i   , their total contribution will be 

1R �1 H 
� 21)( HRR �2 
�� 323 )( HRR ……. . Re-ordering terms leads also for the second 

part of the integral to the decomposition into a data kernel )]()[( 11 
�

� iii VVH iH  for the 
model parameter  ,  with  and  as integrals on the left and right vertical boundary. iR iV 1
iV

Complications arise from the involvement of second derivatives of Green’s function. They are 
overcome as follows: The products )',';,()'( ' zyzyGz zzn�  and )',';,()' ' zyzyG yz(zn�  are 

cosine and sine transforms of  with  and  as distance factors, k as 
wave number and 

)'z )cos(ku,(ˆ
' zG zz )kusin(

'yyu ��  as horizontal distance between field and internal point. The 
asymptotic value of  for '

ˆ
zzG ��

s of (n

k  is the purely geometric attenuation factor 

. Hence, for the cosine and since transforms of 
define the frequency-dependent transient part )' zGz

|)'| zkk � 0�z )]'zexp(ˆ[ ' kkG zz ��exp(� z�
 and � 'z ')'( yzn Gz�  Their 

remaining static parts as tran expsforms of )'( zkk �  are 

222
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    for ),';0,()( ' izzin zyyGz�                                                   (A3a) 
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on horizontal boundaries at , and iizz �'

222 )'(
'21
vz
vz


�
     for )',;0,()'( ' zyyGz iyzn�                                                  (A3b) 

on vertical boundaries at  and with jyy �' )( jyyv �� .

We solve integrations along boundaries numerically as in eq. (A1), when we use the transient 
parts of 'zzn G�  and 'yzn G� , but analytically with their static parts in the following 
approximated manner. The magnetic field within the i-th grid cell, including its boundaries, is 
expanded into a two-dimensional Taylor series. Then to first order

'
)'(

'
)'(),()','( 0000 z

Bzz
y
ByyzyByyB xx

xx 	
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��
�

 with  denoting the coordinates of the centre of the grid cell. For horizontal boundaries 
we insert the thus approximated magnetic field for 

),( 00 zy

izz �'  into eq. (A2), replace 'zzn G�  by its 
static part from eq. (3A) and integrate the obtained purely geometric expression in closed 
form. The same is performed on the vertical boundary at iyy �' , replacing now 'yzn G�  by its 
static part from eq, (A3b). Adding the resulting contributions of all four boundaries of the i-th
grid cell yields 
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                                                      y
 --------------------- ---------       The numbers refer to the four corners of the grid 0�z $

                                       cell, the angle jyy �' �k�  implies the angle under which 
  1 -----------  2                        the boundary between the corners k and �  is seenizz �' ! !

                        |                 |                            from field point $ , and  is the distance  kr
                    3 ----------- 4                         between corner  and ! ! k $ .

The first conclusion to be drawn from eq. (A4) is that the internal magnetic field contributes 
to this sum only through its spatial derivatives. Secondly, the coefficients of the magnetic 
field derivatives represent the potential field, which positive and negative monopoles, here 
electric charges, sitting on opposing boundaries generate at the field point. But since the 
derivatives of  are frequency-dependent, their contribution to should be named quasi-
static, even though they arise from the static parts of 

xB ayE

'zzn G�  and 'yzn G� . This applies also to 
characteristic so-called static effects for B-polarisation, among them the large “adjustment 
distance” from anomalies, within which  returns to its normal level.  yE
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