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SUMMARY

A magnetotelluric tensor from a particular site is taken as an example and analysed in

terms of invariants of rotation of the measuring axes. The invariants presented range

from the results of principal value decompositions of the real and quadrature parts taken

separately to the results of phase tensor analysis. Attention is paid especially to those

invariants which indicate dimensionality. Estimates are also obtained for 2D strike angle.
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1 INTRODUCTION

Central to a magnetotelluric study of Earth structure is the determination, from field ob-

servations at an array of sites, of values of the magnetotelluric impedance tensors for those

sites. Often the interpretation of such observed tensors is straight-forward, enabling the

magnetotelluric study to proceed to completion.

Sometimes, however, individual sites may appear anomalous, and need extra attention

before their interpretation can proceed. In such cases, calculating and displaying invariants
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of rotation may be helpful in understanding perplexing characteristics. The present paper

gives graphical analyses of a selected example. While the techniques may be most useful in

complicated cases, the example presented is relatively simple, as a simple example makes a

good introductory case.

The example is presented against a wider background. The procedure for 1D inversion

is always based on an invariant (the observed 1D impedance). Similarly 2D inversion is

commonly based on the TE (E-pol) and TM (B-pol) impedances, which in this paper are

emphasized as invariants of rotation. As the subject of magnetotelluric interpretation ad-

vances further into 3D inversion and modelling, the question of which parameters to invert,

from a wide range of possible candidates including notably invariants, may be expected to

need frequent re-visiting.

2 INVARIANTS OF ROTATION

The significance of invariants of rotation in magnetotelluric interpretation has been rec-

ognized for some time (Ingham 1988; Park & Livelybrooks 1989; Fischer & Masero 1994;

Lilley 1998). In recent years Szarka & Menvielle (1997) and Weaver et al. (2000) have in-

vestigated sets of seven invariants which, together with an eighth value in the form of a

geographic bearing, have been needed to fully describe a complex magnetotelluric tensor of

eight elements.

The development of phase tensor analysis by Caldwell et al. (2004), and see also Bibby

et al. (2005), led Weaver et al. (2003) to present and discuss three invariants (J1, J2 and

J3) which arise in phase tensor analysis. Weaver et al. (2003) was reprinted as Weaver et al.

(2006).

The recognition that just three invariants carry much important information in many

practical situations is now explored in the example of this paper. The three invariants are

calculated and displayed as functions of period. For comparison, a variety of other invariants

are also displayed, notably the principal decomposition values of Lilley (1998), and the seven

invariants of Weaver et al. (2000).
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Figure 1. The mimic003 data and their basic decomposition. The units of apparent resistivity

(rhoZxx, rhoZxy, rhoZyx, rhoZyy, rhoZPyx and rhoZPxy) are ohm m, and angles of phase and

direction are given in degrees. For the Mohr circles, each tensor element value has been scaled by

multiplication by the square root of the period, to make the plot of a set of circles more compact.

3 THE EXAMPLE FROM AUSTRALIA

3.1 Data and basic decomposition

The example is from a sedimentary basin in Australia. It is site mimic003 in the Magne-

totelluric Investigation of the Mt Isa Crust (MIMIC) experiment of 1997 (Wang 1998; Lilley

et al. 2003).

There are two figures presenting results for this site. The first (Figure 1) shows, in its

far-left-hand panel, apparent resistivity and phase values calculated from the Zxx, Zxy, Zyx
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and Zyy tensor elements as observed. The adjoining graphs in the centre-left panel show

corresponding phase values (the Tzx and Tzy graphs are not part of the present discussion).

The rhoZxy and rhoZyx amplitudes are appropriate for a sedimentary basin, being similar

and showing an increase with period (and depth) from a conductive surface layer; they

diverge at the longest periods. The Zxy and Zyx phases are in the appropriate quadrants,

and again differ from each other only at long periods, consistent with the 1D sedimentary

basin where they were recorded. The rhoZxx and rhoZyy amplitudes are generally small,

and the phase values generally scattered, again consistent with 1-D behaviour (except at

the long-period end of the spectrum, where departure from one-dimensionality below the

sedimentary basin is detected).

The centre-right and far-right panels for this figure show, at the top, Mohr circles for the

magnetotelluric data. These circles are generally of small diameter (scaled by the distance

of the circle centre from the origin of the plot), and are centred on or near the horizontal

axes, again indicating one-dimensionality of electrical conductivity structure. In the circles,

invariants of rotation of the measuring axes become evident. For example the centres of the

circles are fixed by the observed data, and would not change even were the measuring axes

to be rotated and so aligned differently.

In the case of an ideal 2D structure, the E-pol and B-pol impedances are given by the

two points where the circle (itself now centred on the horizontal axis) cuts the horizontal

axis. Once determined, these points of intersection which indicate E-pol and B-pol values

do not change with measuring axis rotation, and are invariants of rotation.

The panels below the circles show the results (centre-right : real; far-right : quad) of

principal value decompositions of the magnetotelluric tensor, taking real and quad parts

separately (Lilley 1998). The situation is evisaged where an ideal two-dimensional tensor is

measured using axes (say aligned north and east) relative to which the geologic strike has

bearing theta-h, and the electric field is distorted from its 2D direction by an angle (theta-e

minus theta-h). Then rotating the magnetic axes by angle theta-h and the electric axes by

angle theta-e recovers the original two-dimensional tensor, and its E-pol and B-pol values.
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Using equations (107) - (114) of Lilley (1998), the panels show the theta-e and theta-h

values for the mimic003 example, and below them, values of rhoZPyx and rhoZPxy respec-

tively (centre-right : amplitude; far-right : phase). In the calculation of the rhoZPyx values,

the real and quad parts of ZPyx have first been combined in the usual way to give ZPyx

amplitudes, even though the real and quad parts of ZPyx may have resulted from different

values of theta-h and theta-e. The same applies to ZPxy and rhoZPxy. For the simple 2D

distortion case described, such rhoZPyx and rhoZPxy results are the undistorted E-Pol and

B-pol values (possibly interchanged).

Examining the results plotted for the mimic003 example, it is evident that neither theta-e

nor theta-h are well determined for most of the period range (stable values start to become

evident for T > 10 s). This behaviour is consistent with 1D structure.

The plots for rhoZPyx and rhoZPxy are well behaved in both amplitude and phase.

They agree for most of the spectrum, again indicating one-dimensionality; however at pe-

riods above 10 s they begin to diverge, showing the conductivity structure becoming more

complicated, as already noted.

3.2 Invariants as a function of period

The second figure (Figure 2) moves to the calculation and presentation of the seven invariants

of rotation of Weaver et al. (2000), denoted (in the far-right and centre-right panels) as I1 to

I7. Two supplementary invariants are also included, I and I0 (Weaver et al. 2003, 2006). The

seven invariants (I1 to I7) monitor the dimensionality of the impedance tensor as a function

of period. Specifically, I1 and I2 gauge the scale of the tensor: see equation (24) of Weaver

et al. (2000). The quantities I3 and I4 are dimensionless, vanish for 1D, and otherwise gauge

the extent of two-dimensional anisotropy: see equations (26) and (27) of Weaver et al. (2000).

The quantities I5, I6 and I7 (also dimensionless) gauge three-dimensionality, see equations

(51) and (52) of Weaver et al. (2000). Of the supplementary invariants in Figure 2, I is

related to I1 and I2. The supplementary invariant I0 is related to I7, in that the vanishing

of I0 implies that I7 is undefined.

22. Kolloquium Elektromagnetische Tiefenforschung, Hotel Maxičky, Děčín, Czech Republic, October 1-5, 2007 
                                                                                 22



-90

0

90

th
et

a-
s

10-4 10-310-3 10-2 10-1 100 101 102 103 104 105

Period (s)

-90

0

90

ga
m

m
a

10-4 10-310-3 10-2 10-1 100 101 102 103 104 105

Period (s)

-90

0

90

al
ph

a

-90

0

90

be
ta

0.0
0.5
1.0
1.5
2.0
2.5
3.0

J2

10-4 10-310-3 10-2 10-1 100 101 102 103 104 105

Period (s)

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5

J3

10-4 10-310-3 10-2 10-1 100 101 102 103 104 105

Period (s)

-0.5

0.0

0.5

I7

0.0
0.5
1.0
1.5
2.0
2.5
3.0

J1

-0.5

0.0

0.5

I5

-0.5

0.0

0.5

I6

0.0

0.5

1.0

I3

0.0

0.5

1.0

I4

10-210-2

10-1

100

101

102

103

I1

10-210-2

10-1

100

101

102

103

I2

10-210-2

10-1

100

101

102

103

I

0.0

0.5

1.0

I0

-1

0

1

T’
21

0 1 2

T’11

Figure 2. Invariants as a function of period for the mimic003 data. The units of I1 and I2 are those

of the observed tensor elements, and I has those units squared. The invariants I0, I1 to I7, and J1

to J3 are dimensionless, as are the quantities T’11 and T’21, plotted to give the Mohr circles. For

1D data (points on the horizontal axis) T’11 is the trigonometric tangent of the phase value of the

magnetotelluric impedance.

Thus in Figure 2, invariants I1 and I2 show a common, well-behaved smooth decrease

with increasing period (which is seen also in I). Invariants I3 and I4 show values near zero

for most of their period range, a clear indication of one-dimensionality in the observed data.

Further I5 and I6 also show values near-zero for most of their period range, indicating

absence of three-dimensionality, and I7 is correspondingly indeterminate and unstable.

Three related independent invariants, J1, J2 and J3, as introduced by Weaver et al. (2003,

2006) and which can be expressed in terms of I, IO, I1, I3 and I7, are next considered. They
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are closely related to the phase tensor analysis of Caldwell et al. (2004) and summarise

neatly the extent to which the dimensionality of the data is 1D, 2D or 3D. Their values are

plotted at the bottom of the far-left and centre-left panels. The values of J2 and J3 of zero

for periods less than 10 s demonstrate very clearly where the data are one-dimensional.

These phase tensor invariants may also be displayed in Mohr circles, as demonstrated

by Weaver et al. (2003, 2006). Such Mohr circles are presented at the top of the right-hand

side of Figure 2. The horizontal distance from the origin to the centre of a circle is J1, and

is a basic scale for the phase tensor. The radius of a circle is J2, and is a measure of the

two-dimensionality of the data. The offset of the circle centre from the horizontal axis is J3,

and is a measure of the three-dimensionality of the data.

Inspection of Figure 2 shows that indeed at short periods the circles are points close to

the horizontal axes, and so are 1D in character. Two-dimensionality and three-dimensionality

enter the data together as period increases to greater than 10 s. These characteristics, evident

in the circle plots, are consistent with the numerical values of J1, J2 and J3 plotted at the

bottom of the left-hand panels.

The angles alpha, beta and gamma, presented below the Mohr circles in Figure 2, are

auxiliary to the analysis (Weaver et al. 2003, 2006). Alpha is closely related to J2, and is

zero when J2 is zero. Beta is the arctangent of (J3/J1), and is zero when J3 is zero. Gamma

is the arcsine of (J3/J2), and is unstable for a one-dimensional situation, when both J3 and

J2 are small.

The angle theta-s, plotted below alpha, is presented by Weaver et al. (2003, 2006) as

the angle of 2D strike, when such a strike exists. It is equivalent to the Bahr angle (Bahr

1988). In the present example only for periods greater than 10 s is this quantity at all well

determined, and then, as has been seen, three-dimensional characteristics enter the data at

the same time as two-dimensional characteristics. However, taken as the strike angle for a 2D

model, the values plotted for theta-s may be compared with the values for theta-h (real and

quad) in Figure 1. It can be seen there is consistency between these different determinations

of 2D strike direction.
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4 CONCLUSIONS

The graphical analysis of rotationally invariant quantities of a magnetotelluric tensor may

help the interpreter to understand particularly some 3D behaviour. Such understanding

may be crucial in deciding when simpler 2D or even 1D modelling and interpretation may

be appropriate. Various estimates of 2D strike angle also arise in invariant analysis, and may

be useful in the modelling and inversion of observed data.

Of the many invariants which may be calculated and examined, three which arise from

phase tensor analysis have great appeal. In a direct way they scale and demonstrate 1D, 2D

and 3D behaviour, respectively.
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