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Abstract
The paper presents theoretical formulae for calculation of the spherical harmonic expansion of
magnetic potential for current loop or belt model for stationary current systems in the high iono-
sphere and magnetosphere. The axis of symmetry for the current system does not coincide with the
axis of Earth’s rotation. Due to inclination of these axes there occurs azimuthal asymmetry of the
exciting magnetic field which causes time-harmonic field for the observator on the rotating Earth.
Theoretical EM field can be calculated by means of theory EM induction for the multilayered
sphere for the superposition of spherical waves for discrete angular frequencies m ⋅ Ω, where m
is order of the spherical harmonics and Ω is angular frequency of the Earth’s rotation. The paper
presents theoretical graphs of time variations of components (Bx, By, Bz) at selected observatory
on the surface of the rotating Earth for near auroral (polar) or distant quasi equatorial current
belts. There is shown that in the time course of magnetic field is dominant diurnal time period,
corresponding to m = 1, while m = 0 corresponds to the steady external field.

Introduction
The advanced geomagnetic research of the Earth’s space has discovered that in the Earth’s iono-
sphere and magnetosphere there exist numerous huge electric current systems of complex geometry
and time changes. The most known and closest to the Earth’s surface is the ionospheric system
generating the Sq geomagnetic variations (Campbell, 1989), another current systems occur in the
auroral oval (Akasofu, 1972) which cause the substorms, etc. Very important is the ring current
system at the distances 2–5 Re, which persists also in quiet magnetospheric state and during the
perturbed solar wind conditions becomes the source of geomagnetic storms. This ring current is
volume distributed, its intensity is dependent on both the distance from the Earth’ centre and polar
angle Θ. The analyses presented e.g. in Nishida (1978) show interesting property that the current
intensity in the interior ring at r ≈ 3 Re is directed eastward (intensity about I1=̇ + 80000 A) and in
the outer oval at r ≈ 4.5 Re is current directed westward (intensity about I2=̇ − 1100000 A). Using
the Amper’s law we can easily find that this westward current is clearly dominant during the main
phase of the magnetic storm, since during this phase the horizontal (northward) component of the
geomagnetic field on the middle latitudes strongly decreases.

The circular current loop/belt model
Let us consider the source of the external magnetic field the steady current spherical sheet of radius
a > Re. The surface current density i ≡ (0, iΘ, iΦ) as shows scheme in Fig. 1. The basic formulae
for the exciting magnetic field we derived by using stream function Ψ concept according to Smythe,
1950, where the magnetic field components are derived by the vector potential Â and B̂ = ∇×Â. The
“hat” symbol denotes fields in the stationary (non-rotating) co-ordinates (r, Θ, Φ), firmly linked to
the current source spherical sheet. We will use equivalent formulae for the magnetic field potential
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Fig. 1. Simplified spherical source current sheet

V̂(r, Θ, Φ) by putting V̂ = −∂(r W)/∂r and B̂ = − grad V̂. If the stream function Ψ(Θ, Φ) is expressed
by the sum of spherical harmonics Sm

n (Θ, Φ):

Ψ(Θ, Φ) =
∞∑

n=1

n∑
m=0

Sm
n (Θ, Φ), (1)

then the magnetic field potential outside of source sheet (r > a) is:

V̂o = −μ0

∞∑
n=1

n
2n + 1

(a
r

)n+1 n∑
m=0

Sm
n (Θ, Φ), (2)

and in the interior (r < a):

V̂i = μ0

∞∑
n=1

n + 1
2n + 1

( r
a

)n n∑
m=0

Sm
n (Θ, Φ). (3)

These potential are discontinuous on the source spherical sheet, there must be:

μ0Ψ(Θ, Φ) =
[
V̂i − V̂o

]
r=a . (4)

For the zonal currents in the spherical sheet (current flow along paralells of co-latitude Θ) there is
axial symmetry and we have:

Ψ(Θ) =
∞∑

n=1
cnPn(cos Θ). (5)

Current density has only Φ component:

iΦ =
1
a

∂Ψ
∂Θ

= −
∞∑

n=1
cnP1

n(cos Θ). (6)
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The potential of magnetic field which excites Earth r < a:

V̂i = μ0

∞∑
n=1

n + 1
2n + 1

( r
a

)n
cnPn(cos Θ). (7)

In next explanations this potential we will denote as V̂e, since is external with respect to the Earth’s
body. As a simple model of the ring current is a circular loop of radius a(> 3 Re) bearing electric
current I, situated near the geomagnetic equatorial plane. The angle between the axis of current
circle and axis of symmetry of the belt we denote as α. The axis of current loop/belt we consider
running through the Earth’s centre and inclined by the angle θ0 to the earth’s north semi axis. The
situation is shown in the Fig. 2 and cn = −I(2n + 1) sin α P1

n(cos α)/[2n(n + 1)].
The magnetic field components for the region r < a due to this single loop in the r, Θ variables are
known e.g. from Smythe (1950) in the form:

B̂e
r =

μ0I sin α
2a

∞∑
n=1

( r
a

)n−1
P1

n(cos α)Pn(cos Θ),

B̂e
Θ =

−μ0I sin α
2a

∞∑
n=1

1
n

( r
a

)n−1
P1

n(cos α)P1
n(cos Θ). (8)

Here Pm
n (cos Θ) are the Legendre functions degree n orders m = 0, 1. These formulae were

derived from the magnetic vector potential with non zero azimuthal component Aφ . For the

r, θ , φ
θ
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Fig. 2. The geometrical scheme of the current belt (green) at the sphere r = a distributed at polar angle distances
Θ ∈ 〈α1, α2〉 above the spherical Earth. The black circle refers to the current loop.
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geomagnetic purposes there is more suitable find the scalar potential which negative gradient gives
the components (1). After some modifications we can find this potential in the form:

eV̂(r, Θ) = −R
∞∑

n=1
(r/R)nAnPn(cos Θ), (9)

where R = Re is the radius of the Earth and coefficients An are:

An =
μ0I sin α

2a
⋅

1
n

(
R
a

)n−1
⋅ P1

n(cos α), (10)

we can easily find that Br and BΘ are given by the derivatives:

B̂r = −
∂ eV̂
∂r

, B̂Θ = −
1
r

∂ eV̂
∂Θ

, (11)

since P1
n(cos Θ) = −∂Pn(cos Θ)/∂Θ.

From the principle of superposition for stationary electromagnetic field it is clear that potential (2)
can be generalized to the system of current loops carrying the intensity Ik, their position is given by
the support sphere radius ak and polar angle αk. Then we obtain from (3) formula for coefficients
of the exciting potential

Ãn =
μ0
2n

N∑
k=1

Ik sin αk
ak

⋅
(

R
ak

)n−1
⋅ P1

n(cos αk). (12)

We can also transform this summation formula to the case of continuous distribution electric current
density in the azimuthal direction Jφ (Θ′), which is distributed in the polar angle distances 〈α1, α2〉
above the sphere r > R. Then we will have:

Ãn =
μ0

2na

(
R
a

)n−1 α2∫
α1

Jφ (Θ′)sin Θ′P1
n(cos Θ′) d Θ′. (13)

The magnetic field potential in co-ordinates (r, Θ) can be easily transformed into stationary spherical
system (r, θ , φ ) with polar axis identical with Earth rotation axis. Let the θ , φ co-ordinate angles
of north pole crossection of the current system axis symmetry are (θ0, φ0). Then the expression for
the cos Θ will be:

cos Θ = cos θ cos θ0 + sin θ sin θ0 cos(φ − φ0). (14)

Using the additional theorem for Pn(cos Θ) (e.g. Stratton, 1941) we will have:

Pn(cos Θ) = Pn(cos θ )Pn(cos θ0) +

+ 2
∞∑

m−1

(n − m)!
(n + m)!

Pm
n (cos θ0)Pm

n (cos θ ) cos m(φ − φ0). (15)

The magnetic potential eV̂ will be real part of the complex expression:

eV̂(r, θ , φ ) = −R
∞∑

n=1
(r/R)n

n∑
m=0

Cn,mPm
n (cos θ ) exp

[
− i m(φ − φ0)

]
, (16)

where the spherical harmonics coefficients Cn are calculated from An using relation:

Cnm = An(2 − δm,0)
(n − m)!
(n + m)!

Pm
n (cos θ0), (17)
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δm,0 = 1 for m = 0, δm,0 = 0 for m ≥ 1 is Kronecker’s symbol. Here we use the associated Legendre
functions in the form:

Pm
n (x) = (1 − x2)m/2 dm Pn(x)

d xm . (18)

We will have e.g. P1
1(x) =

√

1 − x2, P1
2(x) = 3x

√

1 − x2, P2
2(x) = 3(1 − x2) etc. We can see, that

each coefficient An generates a family of n + 1 coefficients Cnm. The components of the exciting
magnetic field can be easily calculated by means of − grad eV̂(r, θ , φ ):

eB̂r = −
∂
∂r

(eV̂), eB̂θ = −
1
r

∂
∂θ

(eV̂), eB̂φ = −
1

r sin θ
∂

∂φ
(eV̂). (19)

Let us note that these formulae are more suitable for geomagnetic studies in comparison to the
formulae using the elliptic integrals in the paper Fuji and Schulz (2002).
The current density in the stationary system (r, θ , φ ) we suppose as stationary, but for the obser-
vator (geomagnetic observatory) on the rotating Earth with geographical co-ordinates (r, θ , λ ) the
external field potential becomes time-harmonic, since the azimuthal function exp

[
− i m(φ − φ0)

]
must be transformed into exp[− i m(λ − φ0 + Ωt)], where Ω is angular frequency of Earth’s rotation.
This means that on the rotating Earth we observe asymmetric stationary external magnetic field as
time-harmonic, with discrete angular frequencies ω = m ⋅ Ω.
The problem of EM induction in the rotating sphere (Earth) can be solved by means of low-velocity
relativistic electrodynamics (e.g.Bullard, 1949; Sochelnikov, 1979) the appropriate Maxwell equa-
tions in the non rotating reference frame are:

∇ × B̂ = ĵμ0, ∇ × Ê = −∂B̂/∂t, ∇ ⋅ B̂ = 0. (20)

The density of the electric current ĵ is:

ĵ =
{

σ(Ê + v̂ × B̂), for r ≤ Re,
0 for r > Re. (21)

We can see that for the region of the rotating sphere (Earth), r ≤ Re the magnetic field obeys
equation:

∇ × ∇ × B̂ = −σμ0
[
∂B̂/∂t − ∇ × (v̂ × B̂)

]
. (22)

In the region outside the sphere the magnetic field satisfies equation

∇ × B̂ = 0, r > Re, (23)

so it can be calculated by gradient of the scalar potential in spherical functions of variables r, θ , φ .
In our case we have only rotational motion of the conducting sphere around the polar axis θ = 0 of
the co-ordinate system Ŝ, so the velocity vector will have only φ -component:

v̂ ≡ (0, 0, vφ ), v̂φ = Ωr sin θ . (24)

Careful calculation of the expression ∇ × (v̂ × B̂) will give:

∇ × (v̂ × B̂) = −Ω∂B̂/∂φ . (25)

Considering that in our non rotating reference frame we have ∂B̂/∂t = 0, we obtain from (22)
equation:

∇ × ∇ × B̂ + σμ0Ω∂B̂/∂φ = 0. (26)
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The magnetic field potential (16) due to stationary electric currents depends on φ co-ordinate via
exp[− i m(φ − φ0)], where m = 0, 1, 2, . . . is (azimuthal) order number of spherical harmonics. The
same dependence will be transmitted to the magnetic field, then the derivative with respect to φ for
m-harmonics in equation (26) can be easily performed and we obtain for m-th harmonics mB̂ from
(26):

∇ × ∇ × (mB̂) = i μ0mσΩ(mB̂). (27)

For the observer (observatory) on the rotating Earth with co-ordinates (r, θ , λ ); θ is the geographical
co-latitude angle and λ is the geographical longitude angle, we must put transformation:

φ = λ + Ωt, (28)

where t denotes UT. The magnetic field on the surface or inside of rotating Earth we denote
B ≡ (Br, Bθ , Bλ ). It will be time harmonic dependence, since from (26) we obtain for its m-
harmonics mB equation:

∇ × ∇ × (mB) = i ωμ0σ(mB), (29)

where ω = mΩ. This is well known EM induction equation for angular frequency ω, which can be
solved by standard treatment using spherical wave functions for poloidal type of magnetic field.

Time harmonic EM induction in the multilayered rotating Earth
The problem of the time-harmonic excitation field and its induction effect in the sphere has been
gradually developed during last century e.g.: Lamb, Schuster, Chapman, Rikitake, Lahiri, Price.
Very detailed monographies in this topic is are (Rotanova and Pushkov 1982; Berdichevsky and
Zhdanov, 1984; Campbell, 1987). Valuable knowledge to the basic EM induction problem for the
spherical Earth can be also found in papers (Pěč, Martinec and Pěčová, 1985) and more recently
in (Maus and Lühr, 2005) as well as (Velı́mský and Martinec, 2005; Velı́mský, Martinec and
Everett, 2006). In our study we present formulae which use more suitable form of spherical Bessel
functions, which simplifies expressions for reflection and transmission coefficients on spherical
boundaries. The harmonic time variability of the exciting potential eV(r, θ , λ ) we suppose in the
form exp(− i ωt), where ω = mΩ and introduce the complex potential:

eU(r, θ , λ ) = −R
∑
n,m

Cnm(r/R)n Pm
n (cos θ ) Gm(λ , t), (30)

where Gm(λ , t) = exp[− i m(λ − φ0 + Ωt)].
Physical reality we assign to the real part of the eU(r, θ , λ ) and its gradient. The individual
components of the exciting magnetic field are of individual spherical harmonics (n, m) are:

e
rBnm = 0Cnm(r/R)n−1 ⋅ nPn(cos θ ) Gm(λ , t)

e
θBnm = 0Cnm(r/R)n−1 ⋅

d Pm
n (cos θ )
d θ

Gm(λ , t)

e
λBnm = 0Cnm(r/R)n−1 ⋅

Pm
n (cos θ )
sin θ

∂Gm(λ , t)
∂λ

. (31)

The Earth we consider as a spherical multilayered of radius R(= Re), consisting of L concentric
spherical layers till the core mantle boundary at the depth 2900 km, the core (r ≤ rL) is considered
as a uniform sphere of conductivity σL. We introduce r1 = Re and the conductivity σj is assumed
constant in the layer rj+1 ≤ r ≤ rj. The magnetic permeability is assumed constant in all layers, as

22. Kolloquium Elektromagnetische Tiefenforschung, Hotel Maxičky, Děčín, Czech Republic, October 1-5, 2007 
                                                                                 87



well in the non-conducting region “0” outside the sphere and equal μ0 = 4π × 10−7 Henry/m. The
slowly time varying EM field in the individual layers obeys the Maxwell’s equations

∇ × B = σμ0E, ∇ × E = + i ωB. (32)

The magnetic induction B now represents the time-harmonic field of selected angular frequency
ω. In a view of (28) and (31) this field obeys the vector wave equation

∇ × ∇ × B = i ωμ0σB (33)

It solution in spherical co-ordinate system does not reduce to the scalar Helmholtz equation as
in the Carthesian co-ordinates. The B vector must be separated into toroidal and poloidal parts
as is proved in details by Stratton, 1941; Born and Wolf, 1964. If the exciting field is poloidal
like (31), the induced magnetic field in a spherically concentric layers will be poloidal too and its
(r, θ , λ ) components will have the same θ , λ dependence as in (31). Their radial dependence will
be expressed by the spherical functions fn = ψn(kr), ζn(kr) which obey the ordinary differential
equation

f ′′n (z) +
[
1 − n(n + 1)/z2

]
fn = 0, z = kr. (34)

It was proved in Born, Wolf, 1964 that the solutions are functions:

ψn(kr) = (πkr/2)1/2Jn+1/2(kr), ζn(kr) = (πkr/2)1/2H(1)
n+1/2(kr), (35)

where Jn+1/2(kr), H(1)
n+1/2(kr) are Bessel function and Hankel function of the first kind half integer

index n + 1/2 and complex argument kr:

kr = r(i ωσμ0)1/2 = r(1 + i)(ωσμ0/2)1/2. (36)

In the j-th layer this argument will carry the dependence on the electrical conductivity σj, this
means:

kjr = r(1 + i)(ωσjμ0/2)1/2. (37)

The spherical (n, m) mode of the magnetic field will have in the j-th layer components:

j
rBnm =

[jCnmψn(kjr) + jDnmζn(kjr)
]

n(n + 1)(kjr)−2Pm
n (cos θ )Gm(λ , t),

j
θBnm =

[jCnmψ ′

n(kjr) + jDnmζ ′

n(kjr)
]

(kjr)−1 d Pm
n (cos θ )/ d θGm(λ , t),

j
λBnm =

[jCnmψ ′

n(kjr) + jDnmζ ′

n(kjr)
]

(kjr)−1Pm
n (cos θ )/ sin θ∂Gm(λ , t)/∂λ . (38)

In the bottom sphere r ≤ dL (the Earth’s core) we must put LDnm ≡ 0, since in this region kr → 0,
where ζn(kr) and its derivative is singular. In the non-conducting region r ∈ 〈R, a) we will have
secondary magnetic field with potential

sU(r, θ , λ ) = −R
∑
n,m

(R/r)n+1 ⋅ 0DnmPm
n (cos θ )Gm(λ , t). (39)

Pertinent components for this potential can be expressed by negative grad sU(r, θ , λ ). From the
EM theory we know that on each conductivity spherical boundary must be continuous transition of
radial (rBnm) and tangentional (θB or λ Bnm) components. In this manner we obtain the system of
linear equations for unknown coefficients jCnm, jDnm while only the exciting field coefficients 0Cnm
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we consider to be known (calculated for the external exciting electric currents). We shall briefly
give algorithm from our previous papers Hvoždara, 1976, 1980. Then we have: for r = r1 = R:

n0Cnm − (n + 1)0Dnm =
[

1Cnmψn(k1r1) + 1Dnmζn(k1r1)
]

n(n + 1)(k1r1)−2,

0Cnm + 0Dnm =
[

1Cnmψ ′

n(k1r1) + 1Dnmζ ′

n(k1r1)
]

(k1r1)−1. (40)

On the boundary r = rj, (j �= 1, j �= L):

j−1Cnmψn(kj−1rj) + j−1Dnmζn(kj−1rj) = γ2
j−1
[jCnmψn(kjrj) + jDnmζn(kjrj)

]
j−1Cnmψ ′

n(kj−1rj) + j−1Dnmζ ′

n(kj−1rj) = γj−1
[jCnmψ ′

n(kjrj) + jDnmζ ′

n(kjrj)
]

(41)

where γj−1 = (σj−1/σj)1/2. For the deepest boundary r = dL (surface of the core) we have:

L−1Cnmψn(kL−1dL) + L−1Dnmζn(kL−1dL) = γ2
L−1

LCnmψn(kLdL)

L−1Cnmψ ′

n(kL−1dL) + L−1Dnmζ ′

n(kL−1dL) = γL−1
LCnmψ ′

n(kLdL). (42)

This system of equations is solvable by the elimination methods, because equations for r =
r2, r3, . . . , rL are homogeneous. The we introduce the proportionality jWn and reflection coefficients
jFn as follows:

LWn = ψ ′

n(kLrL)/[γL−1ψn(kLrL)], L−1Dnm = (−1) ⋅ L−1Fn ⋅ L−1Cnm, (43)

where:
L−1Fn =

ψ ′

n(kL−1rL) − LWn ψn(kL−1rL)
ζ ′

n(kL−1rL) − LWn ζn(kL−1rL)
.

On the boundaries r = dL−1, . . . , d2 we have similarly:

jWn =
ψ ′

n(kjrj) − jFn ζ ′

n(kjrj)
γj−1[ψn(kjrj) − jFn ζn(kjrj)]

. (44)

j−1Dnm = (−1) ⋅ j−1Fn ⋅ j−1Cnm, (45)
j−1Fn =

ψ ′

n(kj−1rj) − jWn ψn(kj−1rj)
ζ ′

n(kj−1rj) − jWn ζn(kj−1rj)
, (46)

In fact the general expressions (44)–(46) also include the interface r = dL, it should be put LFn ≡ 0.
Now we have to consider equations (40) relevant to the boundary r = r1(≡ R) which can be written
in the form

(n + 1) 0Dnm + 1Cnm[ψn(k1r1) − 1Fn ζn(k1r1)] n(n + 1) (k1r1)−2 = n 0Cnm,

−0Dnm + 1Cnm[ψ ′

n(k1r1) − 1Fn ζ ′

n(k1r1)]/(k1r1) = 0Cnm. (47)

From this system of two linear equations we can easily find that the

1Cnm =
(k1r1) (2n + 1)0Cnm

(n + 1)[ψn−1(k1r1) − 1Fn ζn−1(k1r1)]
, (48)

0Dnm =
−n 0Cnm[ψn+1(k1r1) − 1Fn ζn+1(k1r1)]
(n + 1)[ψn−1(k1r1) − 1Fn ζn−1(k1r1)]

. (49)
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In derivation of these equations we have used recurrence properties of the radial functions:

f ′n(z) + (n/z)fn(z) = fn−1(z), (2n + 1)fn(z) − zfn−1(z) = zfn+1(z), (50)

where fn(z) = ψn(z) or ζn(z). In this manner we can calculate the electromagnetic response function
for our multilayered spherical Earth:

0Dnm
0Cnm

=
−n

n + 1
ψn+1(k1r1) − 1Fnζn+1(k1r1)
ψn−1(k1r1) − 1Fnζn−1(k1r1)

= 0Fn. (51)

By using the reccurrence relations (50) we can obtain alternative expression for 0Fn in the form:

0Fn =
n

n + 1

{
1 −

(2n + 1)[ψn(k1r1) − 1Fnζn(k1r1)]
k1r1[ψn−1(k1r1) − 1Fnζn−1(k1r1)]

}
. (52)

This is more suitable for numerical calculations since it contains the radial functions of neighbouring
indices n and n−1. In the classical geomagnetic EM induction theory the coefficient 0Fn corresponds
to the ratio In/En, where In is the amplitude factor of the scalar potential of induced (interior) field
and En is amplitude of the inducing (exciting) field for the spherical harmonics degree n. The
coefficients En, In correspond to our 0Cnm, 0Dnm respectively. We can see that by using the
coefficient 0Fn the amplitudes of radial and tangential components of the n-th (m = 0) harmonics
have on the surface of the Earth are:

rbn = [n − (n + 1)0Fn]En, θ bn = [1 + 0Fn]En. (53)

Their ratio can be used also for calculation of the surface impedance using Berdichevsky and
Zhdanov, (1984) formulae:

Zn =
− i ωμ0Re
n(n + 1)

rbn

θ bn
=

− i ωμ0Re
n(n + 1)

n − (n + 1) 0Fn
1 + 0Fn

. (54)

In this manner our formulae link to the global magnetovariational theory. Let us stress that EM
response coefficients 0Fn are independent of azimuthal number m. The same holds true for ratio
rbn /θ bn for the concentric layered Earth conductivity model.

Numerical calculation of EM response functions and apparent resistivity
Recently we have prepared fast and reliable computer FORTRAN code for calculation of EM
response coefficients 0Fn for wide interval of time periods T, ranging from 3 hours till 6 years,
using Ts as period T in seconds. These calculations were performed for various known depth-
conductivity Earth’s models, i.e. for L ≥ 5 till L = 12. According to present knowledge, for
the spherical Earth there must be considered two kinds of the crust and upper mantle electrical
conductivity distribution models: continental (A), oceanic (B) ones.
The continental model is characterized by the superficial layer “1” of conductivity σ1 ≈ 0.002–
0.02 S/m, thickness 8–15 km, then the conductivity σ2 is about σ1/10, because of dehydratation of
rocks, its thickness is about 30 km. From the bottom of continental crust in depths ∼ 30–50 km the
conductivity grows due to increasing temperature and attains about 0.05 S/km in the continental
astenosphere. In the mantle there is gradual growth of σ , attaining about 2–10 S/m on the mantle-
core boundary in the depth 2900 km. Due to phase transitions of yhe mantle minerals and also
growing temperature there are known boundaries with increase of electrical conductivity at depths
about 410–4500 km, 800–1000 km, 1500–1800 km. In the Earth’s core the electrical conductivity
of hot Fe-Ni-S melt we consider to be uniform: σL = 5000 S/m. It means, that on this boundary
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we have the ratio σL/σL−1 ≈ 103, which enables us to confine only on the calculation of transition
coefficients jFn in the layers in the mantle and crust, i.e. j = L − 1, . . . , 1 where the r ∈ 〈rc, RE〉,
while rc = 0.5453 × RE.
The oceanic model (B) is characterized by the sea water layer of the high conductivity σ1 ≈ 0.4–
0.6 S/m, its mean thickness is about 4 km, which causes high attenuation of EM field of periods
shorter than ∼60 min. The rocks layers below the oceanic bottom have as a rule higher electrical
conductivity in comparison with the continental ones, since the temperature and temperature
gradient is higher about 20% in comparison to the continental litosphere.
The numerical calculations were tested for numerous adequate models, but here we present results
for the “continental” model shown in Fig. 3a. The moduli and phases of 0Fn for this model are in
Fig. 3b together with apparent resistivity curves. The periods for one day and its fractions T/m

0 5 10 15 20 25
10−3

10−2

10−1

100

z/100, km

σ , S/m

Fig. 3a. The graph of conductivity depth distribution in the Earth’s crust and mantle (the “continental model„) as
function of depth (z), used in present study.

can be found at the range log
√

Ts ≈ 2.1 as shows also the Tab. 1.

m 1 2 3 4 5
T/m, day 1 0.5 0.333 0.25 0.2
log

√

Ts 2.468 2.317 2.229 2.167 2.118

For better resolution we plotted moduli of 0Fn multiplied by the factor 10 and the apparent resistivity
values were normed to ρ1 = (σ1)−1 (the resistivity of the first layer). We can see, that the values
of |0Fn| as a rule drop with

√

Ts and the decrease of these values is steeper for increased degree
n of spherical harmonics. The phases of 0Fn attain values from 0◦ till ∼ 75◦ and the phase shift
grows with degree number n and period Ts. The values of log(ρa/ρ1) decrease almost linearly with
log

√

Ts and the curve for n = 1 is above those for n ≥ 2, which is in agreement with results of
Berdichevsky and Zhdanov (1984). Let us note, that for calculations of 0Fn for shorter period (less
than 0.5 day) and high conductive layer j = 1 there must be used large value asymptotics of ψn(z),
ζn(z).
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n
1
2
3
4
5

numb. lay. = 9
σav = 1.255 S/m

log
√

Ts

10 ⋅ |0Fn|

2.1 2.4 2.7 3.0 3.3 3.6

1

2

3

4

5

6

j hj σj
[km] S/m

1 0 0.0250
2 15 0.0020
3 50 0.0050
4 120 0.0500
5 420 0.4000
6 670 0.8000
7 800 1.200
8 2000 2.200
9 2900 5000.

Ph(0Fn) [◦]

2.1 2.4 2.7 3.0 3.3 3.6

25

50

75

log
√

Ts

log(ρa/ρ1)

2.1 2.4 2.7 3.0 3.3 3.6

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Fig. 3b. The graphs of
calculated courses of EM
response coefficients 0Fn,
their phases and course of
log(ρa/ρ1) in dependence
on log

√

Ts, where Ts is pe-
riod T in seconds. The
pertinent values of depths
boundaries hj and conduc-
tivity values σj are given
in the table, σav aver-
age conductivity for each
model (considering depths
to 2900 km).

Magnetic field due to some current belts
The calculations of the primary field coefficients Ãn were performed according to formula (13).
These Ãn we multiply by spherical harmonics for necessary degree numbers n and m = 0, 1, 2, . . . 5
and than using formula (17) we calculate coefficients Cnm for the exciting potential. By summation
with respect to n and m we obtaine the magnetic field components. In order to use common local
geomagnetic horizontal and vertical components on the surface of the Earth, we put:

Bx = −Bθ , By = Bλ , Bz = −Br. (55)

The results of numerical calculations we present for the “continental” Earth conductivity model
and three types of current belt: a) auroral, b) equatorial, c) Sq current model.
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For belts a) and b) we put angular width 20◦ around central circle α, it means α1 = α − 10◦,
α2 = α + 10◦. The axis of the belt we put at spherical coordinates θ0 = 10◦, φ0 = −110◦, which
corresponds to North geomagnetic pole. The net intensity current we put I = 107 A, we suppose
it as distributed uniformly on the width of the belt i.e. J(Θ′) = I/(α2 − α1). The field components
Bx, By, Bz we normed by common norming value Bn = μ0I/(2ac), where ac is the radius of the belt
supporting sphere (≡ a) in theoretical formulae.
For the auroral belt we chosed α = 20◦ and small distance from the Earth surface so ac/Re = 1.1
which means that this belt is in the hight hc = 636 km and then Bn = μ0I/(2ac) = 895.58 nT. The
theoretical time courses of the geomagnetic field components were calculated for the observation
points: (θ = 30◦, λ = 0◦), (θ = 42◦, λ = 0◦), on the rotating Earth, which correspond to high-
latitude (e.g. Nurmijarvi) or mid-latitude geomagnetic observatory, e.g. Hurbanovo. In Figs 4a,b
there is shown the time course of the summary field (exciting + induced) during 46 hours. In both
figures we can see dominant 24 h variation in all three components. The time course of horizontal
components (Bx, By) resambles repeated geomagnetic variations with prevailing period 24 h. The
time course of the exciting magnetic field on the rotating earth for θ = 42◦, λ = 0◦ is presented in
Fig. 4c. When comparing with Fig. 4b we can see that tangential components (Bx, By) are amplified
due to induction, but vertical component Bz is attenuated. Theoretically we can see it in formula
(53), where the n-th harmonics of tangential components on the surface are given by the terms
(1 + 0Fn)Enm, but in the radial component we have terms [n − (n + 1)0Fn]Enm.
For the equatorial belt we chosed α = 90◦ and large distance from the Earth surface so ac/Re = 3.0,
so this belt is in the hight hc = 12755 km and then Bn = μ0I/(2ac) = 328.38 nT. The theoretical time
courses of the geomagnetic field components were calculated for the same observation point (θ , λ )
as in previous case. This equatorial belt we consider as a plausible model for the ring current.
In Fig. 5a there is shown time course of exciting (external) field and in Fig. 5b the summary field
(exciting + induced) during 46 hours. In both figures we can see also dominant 24 h variation in all
three components, but the amplitudes of diurnal waves are smaller in comparison with auroral belt.
Numerical calculations proved that EM induction amplifies both horizontal components about 20%
and strongly attenuates the vertical component, but the time variations on θ = 42◦ are almost the
same as for θ = 30◦. The amplitudes of stationary primary field due to equatorial current belt along
the meridian φ = 0◦ are presented in Fig. 5c. We can see that in this field there is dominant spherical
harmonics n = 1, so Bx is proportional to sin θ , while Bz is proportional to − cos θ . Let us note, that
in our calculations we consider the direction of stationary current as positive (Eastward)., while in
the quiet real magnetospheric current the direction is opposite (Westward). The same holds true
also for the disturbed Dst ring current. In some magnetograms of very strong geomagnetic storms
as recorded at geomagnetic observatory Hurbanovo (e.g. during days 07–11 November, 2004)
there is clearly present some part of the disturbed field as repeating with period one day.
Approximation of Sq current system on the northern hemisphere was considered as the current
belt with axis of symmetry in the pole θ0 = 45◦, φ0 = 180◦ in order to meet knowledge given in
textbooks Parkinson, 1983 or Campbell, 1989. Very important feature in the time course of Sq
geomagnetic variations is their uniform harmonic dependence on the local time and non-uniform
distribution on co-latitude θ . There exist also differences for continents and seasons of the year,
but these are not so pronounced. The time variations in local time t∗ for various meridians λ we
can consider as almost the same as along the meridian λ = 0◦ where we use time t as UT. Simple
calculation, using 1 hour as a unit for time, will show: t∗ = t + λ /(15◦/h), [h], since the angular
speed Ω of the Earth’s rotation is: Ω = 360◦/(24h) = 15◦/h. Then we will have for λ − t expressions
of the magnetic field: m[λ − φ0 + Ωt] = m[Ωt∗ − φ0]. According to Parkinson, 1983 the focus of
the Sq current system in the ionosphere occurs at noon t∗ = 12h (LT), so we must put φ0 = 180◦,
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Current belt field
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Fig. 4a. Time variations of summary (exciting + induced) surface magnetic field for the
auroral current belt around central circle α = 20◦ near the North magnetic pole (θ0, φ0). The
point observation is θ = 30◦, λ = 0◦ on the rotating Earth.
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Fig. 4b. The same as in Fig. 4a, but for co-latitude θ = 42◦.
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Fig. 4c. Time variations of the exciting field due to stationary auroral current belt (α1 = 10◦, α2 = 30◦) at the
observatory θ = 42◦ meridian λ = 0◦ on the rotating Earth.
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Current belt field
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Fig. 5a. Time variations of summary (exciting + induced) surface magnetic field for the
equatorial current belt around central circle α = 90◦ with central axis near the North
magnetic pole (θ0, φ0). The point observation is θ = 30◦, λ = 0◦ on the rotating Earth.
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Fig. 5b. The same as in Fig. 5a, but for co-latitude θ = 42◦.
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Fig. 5c. Amplitudes of the statitonary exciting field due to equatorial current belt along the meridian φ = 0◦ (in the
non-rotating co-ordinate system).
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Current belt field
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Fig. 6a. Time variations of summary (exciting + induced) surface magnetic field for the Sq
current belt around central circle α = 20◦ with central axis at (θ0 = 45◦, φ0 = 180◦). The
point observation is θ = 30◦, λ = 0◦ on the rotating Earth.
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Fig. 6b. The same as in Fig. 6a, but for co-latitude θ = 42◦.
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Fig. 6c. Time variations of the exciting field due to stationary Sq current belt with parameters given in Fig. 6a at the
observatory θ = 42◦ meridian λ = 0◦ on the rotating Earth.
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the radius of the sphere with current we put ac = 1.1Re. In Figs 6a,b we present time course of
the geomagnetic components for co-latitudes θ = 30◦, 42◦, respectively and in Fig. 6c the time
variations of the exciting field on the rotating Earth for θ = 42◦. Comparing Figs 6b,c wee can see
also the amplification of tangential components and attenuation of Bz. The time courses in Figs
6a,b are in good agreement with general features of Sq geomagnetic variations observed in polar
and mid latitude geomagnetic observatories (see Parkinson, 1983).
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Maus S. and Lühr H., 2005: Signature of the quiet-time magnetospheric magnetic fieldd its electromagnetic induction

in the rotating Earth. Geophys. J. Int. 162, 755-763.
Nishida A., 1978: Geomagnetic diagnosis of the magnetosphere. Springer Verlag, Berlin.
Parkinson W.D., 1983: Introduction to geomagnetism, Scottish Academic Press, Edinburgh and London.
Parkinson W.D. and Hutton V.R.S., 1989: The electrical conductivity of the Earth. In: Jacobs J.A. (Ed.) –

Geomagnetism 3, Academic Press, N.Y.
Rotanova N.M. and Pushkov A.N., 1982: Deep electric conductivity of the Earth (In Russian), Nauka, M.
Smythe W.R., 1950: Static and dynamic electricity. McGraw-Hill Book C., N.Y.
Sochelnikov V.V., 1979: Principles of the theory of natural EM fields in sea (in Russian). Gidrometeoizdat, Leningrad.
Stratton J.A., 1941: Electromagnetic theory, McGraw-Hill Book C., N.Y.
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Velı́mský J., Martinec Z., Everett M.E., 2006: Electrical conductivity in the Earth’s mantle inferred from CHAMP

satellite measurements-I. Data processing and 1-D inversion. Geophys. J. Int., 166, 529–542.

22. Kolloquium Elektromagnetische Tiefenforschung, Hotel Maxičky, Děčín, Czech Republic, October 1-5, 2007 
                                                                                 97




