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Abstract
 
The contact impedance of electrodes determines how much current can be injected into the 
ground for a given voltage. If the ground is very resistive, capacitive coupling may be 
superior to galvanic coupling. The standard equations for the impedance of capacitive 
electrodes assume that the halfspace is an ideal conductor. Over resistive ground at high 
frequencies, however, the contact impedance will depend on the electrical properties, i.e. 
electrical conductivity and permittivity, of the subsurface. Here, I review existing equations 
for the resistance of a galvanically coupled, spherical electrode in a fullspace. I extend the 
theory to the general case of a sphere in a spherically layered fullspace which may display 
both galvanic and capacitive coupling.  
 
For a capacitively coupled electrode, the common assumption of an ideally conducting 
fullspace (or halfspace) breaks down if the displacement currents in the fullspace become as 
large as the conduction currents. For a moderately resistive medium with 1000 �m this is the 
case for frequencies larger than 100 kHz. For very high resistivities around 1 M�, the 
transition frequency reduces to 100 Hz. Thus, in principle, one may determine electrical 
resistivity and permittivity by measuring magnitude and phase of the electrode contact 
impedance.  
 
Introduction

DC resistivity measurements are usually carried out with four electrodes. This way, the ratio 
between measured voltage and injected current is independent of the grounding resistance of 
the electrodes. However, calculation or estimation of the electrode resistance may be 
important in some situations. If the ground is very resistive, technical issues may limit the 
current that can be injected into the ground. When trying to decrease contact resistance, for 
example by watering electrodes, the exact dependence on ground resistivity or geometry is 
important to find an optimum strategy. Finally, the contact resistance itself might be used to 
obtain information on the ground resistivity (Dashevsky et al., 2005).    
 
For galvanicall coupled electrodes, equations descibing the injected current as function of 
voltage have been derived for different electrode geometries by Krajew (1957). Capacitive 
electrodes normally consist of sheets close to the ground with no direct contact. They are used 
with an alternating current of sufficiently high frequency such that the impedance is 
sufficiently low. They may be particularly useful if the ground is very resistive and galvanic 
coupling is not feasible, or if fast measurents with a moving system are to be carried out. 
Kuras et al. (2006) describe the theory behind 4-point resistivity measurements with 
capacitive electrodes and discuss the conditions under which inductive currents may be 
ignored. To estimate the contact resistance of capacitive electrodes, the halfspace is normally 
assumed to be an ideal conductor. Over very resistive ground, however, the assumption of an 
ideal conductor is no longer valid,  and the contact resistance of capacitive electrodes will 
depend on electrical conductivity and dielectric permittivity of the halfspace.   
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Here, I review the equations for galvanically coupled electrodes and extend the theory to 
capacitively coupled spheres in a fullspace. I investigate under which conditions the 
assumption of an ideally conducting halfspace breaks down and 2-point measurements might 
be feasible to determine conductivity and dielectric permittivity of the ground.  

The basic setup is sketched in figure 1. A DC voltage is applied to galvanically coupled 
electrodes (top panel) or an AC voltage to capacitively coupled electrodes (bottom panel). 
The aim is to derive equations for the resistance R, required to calculate the current I from the 
applied voltage U via:  
 

IUR /�          (1) 
 
where R depends on resistivity for galvanic coupling, and on resistivity and electric 
permittivity for capacitive coupling. 

Figure 1: Sketch of the basic setup. Top panel: DC voltage applied to galvanically coupled 
electrodes. Bottom: AC voltage applied to capacitively coupled electrodes.  

Galvanically coupled spherical electrode in fullspace 
 
The calculation of the resistance of arbitrary electrodes over a halfspace depends on the shape 
of the electrodes and requires numerical solution. Therefore, I simplify the problem by 
considering spherical electrodes in a fullspace. This strongly deviates from the situation 
sketched in figure 1, but in order to obtain physical insight, simple analytic equations are 
desired. The equation for the contact resistance of a single galvanically coupled spherical 
electrode in a fullspace was given by Krajew (1957):  
 

04 r
R

�
�

�         (2)

where � is the resistivity of the fullspace and r0 is the radius of the sphere. One important 
implication is that the resistance is inversely proportional to the radius, and not to the surface 
of the electrode. This will apply to other types of electrodes as well, in a sense that the spatial 
dimension of the electrode enters linearly into the resistance. The linear dependence might be 
counterintuitive, because one could expect the resistance to decrease with the surface area of 
the sphere. The important point is that the electric field at the surface of the sphere decreases 
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with 1/r0, which compensates one spatial dimension, as can be seen from the derivation in 
appendix 1.  
 
Another useful assumption is that the distance between the two electrodes is large compared 
to the size of the electrodes. In that case, each electrode may be treated independently. The 
distance between the electrodes drops out of the equations and the total resistance will simply 
be the sum of the two single electrode resistances (Krajew, 1957).  
 
Equation (2) can easily be extended to the situation where the electrode is surrounded by 
spherical shells. The parameters for the case of two spheres, which will be sufficient to 
describe most of the practical situations, are defined in figure 2:  
 

 
 

Figure 2: Geometry of a spherical electrode, radius r0 with potential V0, surrounded by a 
sphericall shell with radius r1 and resistivity �1, in the fullspace with resistivity �2.  
 
The resistance of the spherical electrode is given by:  
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A derivation slightly deviating from that of Krajew (1957) is given in Appendix 1.  
 
Equation (3) may be used in different forms to study the dependence of resistance on the 
resistivity distribution of the volume surrounding the electrodes. It is common practice to 
decrease contact resistance by pouring water into the ground near the electrode, and we may 
estimate the amounts of water and the resistivity contrast which is required to achieve a 
certain reduction in resistance. We assume that the water fills a spherical shell of radius r1 and 
reduces the resistivity to �1 compared to �2 of the undisturbed formation. The decrease of 
contact resistance is then expressed as  
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where 
0

2
0 4 r

R
�
�

�         (5) 

denotes the resistance in a fullspace with resistivity �2, which would exist if no watering was 
applied.  
 
Figure 3 illustrates the reduction of electrode resistance by a conductive spherical shell 
surrounding the electrode. The resistance quickly decreases with the size of the conductive 
shell, but for radii larger than 10 times the electrode size, a further increase is not efficient any 
more. The behavior with respect to resistivity contast is similar: Once a reasonable resistivity 
contrast of 1:10 is reached, a further increase does not lead to a significant decrease of 
resistance.  

Figure 3: Reduction of electrode resistance as function of radius of the conductive shell for 
different resistivity ratios between outer fullspace and conductive shell. Note the logarithmic 
radius axis.  

 
Capacitively coupled sphere

For the capacitively coupled sphere, it is useful to use electrical conductivity instead of 
resistivity. We may use the same equations derived for the static case if we replace the 
electrical conductivity � by a complex conductivity defined by:  
 

���� i��*         (6) 
 
where � is the dielectric permittivity. This substitution is justified in detail in Appendix 2. One 
assumption which is not expanded on here is that induction effects may be ignored. This 
aspect was discussed in some detail by Kuras et al. (2006). The complex electrode impedance 
is obtained by rewriting eq(3) with the substitution defined in eq. (6):  
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A capacitively coupled electrode may be studied by setting conductivity and relative dielectric 
permittivity in the inner shell to the values of air (�1=0, �r1=1). If the fullspace surrounding 
the electrode is sufficiently conductive, the common ideal conductor assumption will hold, 
and the resistance will not depend on the electrical parameters of the fullspace. This can be 
seen by writing  eq. (7) in the limit ���:  

10
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4 rri
rrZ

o

o

���


�        (8) 

 
which may be compared with the impedance of a plate over an ideally conductive halfspace:  
 

Ai
dZ

o��
�         (9) 

 
where d is the distance between the halfspace and the plate, and A is the area of the plate. 
Obviously, the thickness of the inner shell (r1-r0) corresponds to d, and 4� r0 r1 corresponds to 
the area A.  
 
However, for a resistive fullspace, this approximation will not be valid any more. The 
transition is illustrated in figure 4, which shows the resistance for a spherical capacitive 
electrode with 1mm separation between electrode and fullspace, calculated from eq. (7). The 
curve for �2=1 S/m represents the ideally conducting fullspace. The resistance follows a 1/� 
frequency dependence over the entire frequency range, and does not depend on conductivity 
or permittivity of the fullspace. The upper limit is set by the curve for very low conductivities 
(�2=10-12 S/m) which represents a spherical electrode in the air.  
 

 
Figure 4: Amplitude of the complex impedance as function of frequency for different 
electrical conductivities (in S/m) of the fullspace. The radius of the spherical electrode is 
r0=0.1m, the shell between the fullspace and the electrode is 1 mm thick (r1-r0=0.001m), and 
the relative permittivity of the fullspace is �r=3. 
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If the fullspace is moderately resistive (i.e. �2=10-3 S/m), the electrode resistance starts to 
deviate from the ideal conductor limit at approx. 100 kHz. If the fullspace is very resistive (i.e 
(i.e. �2=10-6 S/m), the transition starts at relatively low frequencies around 100 Hz. Of course, 
the transition frequency corresponds to the point where displacement currents start to become 
as large as conduction currents. Thus, if a capacitive electrode system is used over permafrost 
areas, over very dry rock, or on space missions landing on asteroids or comets, the ideal 
conductor equations will break down.  
 
Figure 5 illustrates the behavior of the phase of the impedance. In the limit of an infinitely 
conductive or resistive fullspace (�2=1 or 10-12 S/m), the impedance behaves like that of an 
ideal capacitor, and the phase is -90 degrees. For finite fullspace conductivities, the phase will 
be sensitive to variations in conductivity (and permittivity, not illustrated), which may in 
principle be used to determine those paramters.  Measuring amplitude and phase of the 
injected current related to the source voltage gives two equations which are required to solve 
for the two unknowns � and �r. In practice, however, the additional dependence on the 
distance between electrode and fullspace or halfspace, and capacitive coupling between cables 
and the measuring device may create difficulties. Dashevsky et al., (2005) suggested to 
measure the difference of the impedance for two different heights in order to remove coupling 
effects, and used this approach to evaluate pavement quality.  

 
Figure 5: Phase in (degrees) of the contact impedance of a capacitive electrodes for different 
conductivities in S/m) of the spherical fullspace. Parameters are the same as in figure 3.  
 
Conclusions
 
For a single, galvanically coupled sphere, the resistance decreases with the radius of the 
sphere, and not, as one might expect, with the area of the sphere. Thus, if in practice the 
contact area is increased by using many metal sticks in parallel, the decrease of resistance will 
be proportional only to the square root of the number of sticks. When reducing contact 
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resistance by watering, there is a saturation effect with respect to both resistivity contrast and 
volume. Below a resistivity contrasts of 0.1 between water and undisturbed ground, the 
resistance does not further decrease. Thus, there is no point using excessive amounts of salt to 
create extremely conductive water.  
 
For capacitively coupled electrodes, the common assumption of an ideal conductor breaks 
down for resistive ground and high frequencies. Depending on electrode size and geometry, 
the electrode impedance may be underestimated by two orders of magnitude if the finite 
conductivity is neglected. In principle, two-point measurements to determine electrical 
parameters of the subsurface with capacitive electrodes are feasible. However, the penetration 
depth of such measurements is only in the order of the size of the electrodes. Moreover, 
distortion effects by capacitive coupling between cables and the measuring device have to be 
carefully controlled.  
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Appendix 1: Derivation of the electrode resistance for the spherical shell 
model.

A1.1 Spherical electrode in a homogeneous fullspace 
 
We use the geometry sketched in figure 2. We assume a constant potential V0 on the spherical 
electrode with radius r0.  At any distance r from the center of the electrode, the potential for 
r>r0 must follow:  
 

� �
r
r

VrV 0
0�         (A1) 

 
because from potential theory it will decay with 1/r, and V(r0)=V0 has to be fulfilled. 
Therefore, the electric field at r is: 
 

� � 2
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and in particular:  
 

� �
0

0
0 r

VrE �         (A3) 

 
This allows us to calculate the current density at the surface of the electrode and the total 
current by integrating over the area of the sphere:  
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0

0

r
VEj
��

��         (A4) 

 
and  
 

�
�� 002

0 44 rVjrI ��        (A5) 

 
Finally, we obtain the electrode resistance from the ratio between potential and current:  
 

0
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��        (A6) 

 
which is equal to eq. (2).  
 

A1.2 Spherical electrode within a spherical shell in a fullspace  
 
In order to fulfil Laplace’s equation for the potential, in the outer fullspace (r>r1) it must 
follow:  
 

r
brV �)(         (A7) 

 
where b is a yet unknown constant to be determined from the boundary conditions. Within the 
inner shell (r0<r<r1) we use the form:  
 

r
rra

r
rVrV 00
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��        (A8) 

Obviously, this form of V(r) fulfils Laplace’s equation, and the constant a must be determined 
from the boundary condictions. At the edge outer of the inner shell (r=r1), the two potentials 
must be equal:  
 

11

01

1

0
01)(

r
b

r
rra

r
rVrV �


��       (A9) 

 
and thus:  
 

� �arrrVb 0100 ��        (A10) 
 
The second condition results from the continuity of current density at the boundary. Inside the 
boundary (r<r1), the electric field is:  
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and outside (r>r1) it is :  
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Continuity of current density at r=r1 requires that  
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We now have two equations (A10 and A14) for the two unknowns a and b, and we obtain  
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The solution allows us to calculate the current density, which may be expressed as:  
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where 
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is the current density of the sphere in a fullspace without a spherical shell.  
We finally obtain the resistance  in the form given in equation (3) through  

jr
V
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��        (A18)

Appendix 2: Derivation of the potential equation in the complex case 
 
Ampere’s law states that:  
 

t
DjHrot
�
�

��        (A19) 

 
where H is the magnetic field, j is current density and D is the electric displacement. By 
taking the divergence, we obtain:  
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With  
 

Ej ��         (A21) 
 
and transformation to the frequency domain, such that the time derivative becomes a 
multiplication with i�, we get:  
  

� � 0�� EiEdiv ���        (A22) 
 
If we introduce the complex conductivity 
 

���� i��*         (A23) 
 
(A22) writes:  
 

� � 0* �Ediv �         (A24) 
 
Finally, Faraday’s law states that 
 

t
BErot
�
�

�         (A25) 

If induction effects can be ignored, then 
 

0�Erot         (A26) 
 
and the electric field may be obtained from a scalar potential V: 
 

VgradE �         (A27) 
 
We thus obtain the basic equation for V 
 

� � 0* �Vgraddiv �        (A28) 
 
which is the basis for the derivation of the electrode resistances. It is identical to the equation 
used in the static case, the only difference being that it is complex and the DC conductivity 
was replaced as defined in eq. (A23). Thus, all arguments apply for the complex case as well, 
and eq. (3) may directly be transferred into eq. (7).  
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