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Abstract

In general TEM data are evaluated by inversion calculations. The found conduc-

tivity distributions are commonly ambiguous, especially concerning the noise of the

measured data. The use of chebyshev polynomials for the description of the layer

boundary and lateral constraints to connect conductivities within one layer can help

solving these ambiguities through the assumption of an layered haf space. The inves-

tigated methods use an 1D forward calculation, but the inversion algorithm is quasi

2D.

Introduction

Sedimentary soils are often provide an lay-
ered subsurface. These subsurfaces are
mapped in profile orienteted data and nat-
urally invites a 2D interpretation. Unfor-
tunately 2D forward calculations use huge
amounts of computer recources and there-
fore inversion with this method is time in-
tensive. In many cases where an layered
subsurface is suspected, one can force the
inversion method into this scheme. A pos-
sibility to achieve such results is a Lat-
eral Constrained Inversion (LCI). Often
a 1D forward solution with lateral con-
straints is sufficient to investigate an quasi-
layered sedimentary environment (Auken

and Christiansen (2004)). An alterna-
tive, that also requires an layered subsur-
face, is an inversion with series expansion,
where the layer bounderies can be discribed
by chebyshev polynomials as basis func-
tions(Kis (2002)).The model thicknesses in
the model vector substitude with the coef-
ficients of the used polinomials. Chebyshev
polynomials have appreciable numerical ad-
vantages and are often used in geophysi-
cal applications, but the choice of the basis
functions mainly depends on the geological
model. This work compares the results for
these two methods on examples for 1D and
2D synthetic data. The appropriate order
of the polinomials and the importance of
the profile length will be discussed.
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Figure 1: Field setup for Central Loop. right : Propagation of ring currents (smoking
rings).

TEM

Transient ElectroMagnetic (TEM) is a geo-
physical method that is capable to de-
rive the conductivity distribution of a sub-
surface with high resolution. The field
setup cosists of a transmitter, driven by an
electric current that is suddently switched
off, and a reciever that measures the in-
duced voltage of the subsurface currents,
caused by the change of the magnetic
field (Helwig (2003)). Theoretically the
switch off process can be described by a
Dirac Deltafunction, which contains, apply-
ing a Fourier Transformation, all frequen-
cies. Unfortunately, practice relativates this
fact. The recieved signal is called tran-
sient. Fig. 1 shows the central loop field
setup, with a transmitter coil and a reciever
coil in the center of the transmitter. Here
the current system diffuse down and side-
warts, through smoking rings (Nabighian

and Macnae (1991)). The setup is called
Short Offset TEM (SHOTEM) and has an
sheer inductive source. All results in this
work referes to this setup. Another setup is

the Long Offset TEM (LOTEM), it is e.g.
described by Strack (1992)

LCI

Geophysical inversion minimizes the mis-
fit between measured and calculated data.
The derived cunductivity models are in gen-
eral ambiguous whitin the data errors. A
way to invert TEM data is the Marquardt-
Levenberg method.

δ �m = (J̄ J̄T + λĪ)−1J̄T δ�d

δ�m = �m− �m0 �m model vector
�m0 initial model vector

δ�d = �dcal −
�dobs

�dcal calculated data vector
�dobs observed data vector

Where the model vectors �m,�m0 contain
the resistivities ρi and the layer thicknesses
Di, and the data vectors �dobs,�dcal contain
the voltages. The damping factor λ stabi-
lizes the inversion and determine the step
length of one iteration. J is the Jaco-
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Figure 2: Three sites where the adjacent
conuctivities are connected

bian matrix and I the Identity matrix. In
this work the LCI, which is developed by
Auken and Christiansen (2004), applies the
Marquardt-Levenberg method to invert a
profile, but uses a 1D forward calculation
on each site. This is often called 1.5D In-
version. The main idea in LCI is the intro-
duction of the roughening martix R, that is
capable to connect model parameters in the
inversion scheme:

R̄n×m =

⎛
⎜⎜⎜⎝

1 0 · · · −1 · · · 0
0 · · · 1 · · · −1 0
...

. . .
. . .

. . .
. . .

...
0 · · · · · · 1 · · · −1

⎞
⎟⎟⎟⎠

In this manner all parameters can be con-
nected, e.g. vertical parameters as well.
With the background of an sedimentary
quasi-layered subsurface, it is reasonable to
apply lateral constraints for adjacent coduc-
tivities within one layer, shown in Fig. 2.
The invesion problem can than be written:

⎛
⎝ J̄

R̄

Ī

⎞
⎠ δ �m =

⎛
⎝ δ�dobs

δ�rr

δ �mpri

⎞
⎠ +

⎛
⎝ �εobs

�εr

�εpri

⎞
⎠

where
δrp = −R̄�m0

The first line describes the the inversion
as normal with the observation errors εobs.
The second line brings the lateral con-
straints into play, where εr determines the
strenght of the constraint. The third line
can be used for a priori information, with
δ �mpri = �mpri− �m0. Where �mpri contains in-
formations from e.g boreholes and �εpri sets
the strength for the a priori informations.

Inversion with series

expansion

In the inversion with series expansion for
chebyshev basis functions the Levenberg-
Marquardt method is apllied as well. It also
requires a quasi-layered subsurface and in-
verts profiles in a quasi 2D manner, with 1D
forward calculations on each site. But reg-
ularisation for the inversion is different. In-
stead of connecting adjacent conductivities,
layer boundaries are described by polinomi-
als (Kis (2002)), shown in Fig. 3, therefore
the inversion scheme is merely capable to
find solutions for an layered subsurface.

Figure 3: Boundaries are described by poly-
nomials hj(x). The xi indicates the mea-
surement sites
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The chebyshev polinomials are defined by
(Bronstein et al. (1993)):

Tn(x) = cos(n·arccos(x)) with x ∈ [−1, 1]

or can derived by the recursion formula.

Tn(x) = 2xTn−1 − Tn−2

for T0(x) = 1
and T1(x) = x

The new model vector �m contains the co-
efficients Ci for the chebyshev polinomials
in the series expansion on each boundary:

�m = (ρ11, · · · , ρi1, · · · , ρij , · · · , ρmn,

C11, · · · , C1K , · · · , C(m−1)0, · · · , C(m−1)K)

where:

• i = 1, · · · , m is the number of the
layers and therefore m− 1 the number
of the boundaries.

• j = 1, · · · , n is the number of the
sites in the profile.

• k = 0, · · · , K is the order of the
chebyshev polinomials and therefore
K + 1 is the number of coefficients for
each polinomial.

1D Syntehetic Data

To verify the LCI and the chebyshev inver-
sions 1D TEM data were generated using
the program Emuplus (Scholl (2005)). The
distances between the sites are assumed to
be equidistant. The data errors are 5% gau-
sian disstributed and increase strongly for

Figure 4: Four layers with five sites (green)
and a dipping layer.

late times, as in field measurements. The
misfit is calculated by χ, where:

χ =

√√√√ 1

N

N∑
i=1

(dobs
i − dcal

i )2

εobs
i

Fig. 5 shows the result for an inversion
without constrains. It shows, that the re-
sistivities ρi, especially in layer 3 are hardly
represented. The depth on sites 3,4,5 are
too low. But within the data errors the
model is fitted well. Fig. 6 shows the re-
sult after applying lateral constrains. Al-
though the resistivities ρi are still too low,
the course of the dipping layer is repre-
sented much better. The initial model were
ρ0 = (180, 80, 100, 20)Ωm and D0 =
(30, 30, 30)m in both cases and the inver-
sion was stopped, when χ ≤ 1. Like in this
example the LCI was always capable to im-
prove the results of 1D data compared to
an inversion without constraints.

To apply the chebyshev inversions it is
important find out which order of the poli-
nomials is appropriate for inversion prob-
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Figure 5: LCI without constraints, resistiv-
ity values ρi in Ωm. χ = 1.00; 5 iterations.

Figure 6: LCI with costraints of adjacent
resistivities, resistivity values ρi in Ωm. χ =
0.93; 6 iterations.

lems like this. In Fig. 7 and 8 a fit is-
shown for polynomials of the order 5 and
12. The synthetic data has no errors. Com-
paring the results, the course of the nonlin-
ear boundary is already fitted well by the
polinomial of order 5. In Fig. 8 appears an
extrem misfit at the borders. This happens,
because the higher the order of the polyno-
mials, the more unknown the inversion has
to determine, compared to the length of the
measurement lines. It turns out, that orders
from 4 to 7 are acceptable, where higher or-
ders do not improve the results. Inverting
the model from Fig. 4 with a series expan-
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Figure 7: Chebyshev fit with polinomials of
order 5 (red) for a 2 layer boundary (blue),
initial depth (green) and initial polynomial
(yellow).
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Figure 8: Chebyshev fit with polinomials of
order 12 (red) for a 2 layer boundary (blue),
initial depth (green) and initial polynomial
(yellow).

sion of order 5 does not succeed, because the
misfit creeps without appreciable progress
over the iterations and does not converge.
A reason is, that the chebyshev inversion
has more parameters to determine (18 co-
efficents and 20 resistivities) than the LCI
(15 thicknesses and 20 resistivities) for the
same data information. Unfortunately the
parameter dependencies for the chebyshev
inversion are also more difficult to solve. An
approach for this problem is to enhance the
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Figure 9: Chebyshev fit with polinomials of
order 5 (red) reference model (blue), initial
depth (yellow) described by a cubic spline.

Figure 10: Chebyshev fit with polinomials
of order 5 (red) reference model (blue). 6
iterations.

line of measurements or decrease the order
of the polynomials. Fig. 9 and 10 show
a result for a four layer model with fifteen
sites, and no data error. In the initial model
the resistivities are kept the same as in the
reference model, only the depth are varied
(Fig. 9). This shows, that the chebyshev in-
version needs much more data information
to achieve satisfying results.

2D synthetic data

The data for 2D models was generated with
the program sldmem3t, that was written by

500 Ohmm

7,12’

80m
80m

720m

20 Ohmm

Figure 11: 2D Model with dipping layer and
9 central loop sites.

Druskin and Knizhnerman (1988) and base
on finite differences. To test the ability of
the inversions to compensate the slightly
different transients for a 2D case with the
regularisations based on a 1D forward cal-
culation the data for a two layer subsurface
with dipping layer of 7, 2◦ was calculated
(Fig. 11). The data was inverted without
constraints (Fig. 13) and with constraints
on adjacent resistivities (Fig. 14). The ini-
tial model is shown in Fig. 12. The in-
version was stoped, when χ could not im-
prove anymore. The data misfit is 1% gaus-
sian distributed, increasing for late times.
The inversion without constrains is not ca-
pable to resolve the reference model on site
6 and 7 (iteration 6; χ = 20.2), more iter-
ations does not improve this result and the
resistivity and depth values become even
worse, whereas the inversion with lateral
constraints retrieve the values of the refer-
ence model well (iteration 5; χ = 1.87.).
Comparing this two inversions the lateral
constraints have an clear advantage here,
because the outliers on site 6 and 7 can be
balanced by the constraints. In Fig. 15 the
results of the chebyshev inversion can be
seen. They are almost as good, as the LCI
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Figure 12: Initinal model

Figure 13: Inversion without constraints,
χ = 20.2

results (iteration 9; χ = 1.72.) , but the re-
sistivities on site 1 are slightly too low and
the chebyshev inversion needed 9 iteration
for this result.

Conclusion

Assuming a quasi-layered subsurface, both
methods are capable of achieving results
from 1D and 2D synthetic data. LCI has
proved as a reliable tool, that has short cal-
culation times. The results are in genenal
preferable to an inversion of a profile with-
out constraints.

The Chebyshev inversion needs large pro-
files for a convergence on the misfit. The
numerical efford is more expensive and

Figure 14: Inversion with lateral con-
straints, χ = 1.87

Figure 15: Chebyshev inversion, χ = 1.72

therefore the calculation time is larger than
for the LCI, but both methods need just
fractions of time compared to a full 2D in-
version. The advantages of the chebyshev
inversion should futher be tested for long
measurement lines.
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