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Abstract

The natural magnetotelluric (MT) geophysical prospecting method utilizes the spectra of associated
time-varying horizontal electric and magnetic fields at the Earth’s surface to determine a frequency-
dependent impedance tensor. Most current methods of analysis determine the spectra based on Fourier
transform and therefore must assume either that the signals under analysis are stationary over the record
length or that any distortion in the spectral estimations due to non-stationarity will occur in an equivalent
manner in the spectra of both the electric and magnetic fields and thus have no effect on the impedance
estimates. A new method for dealing with non-stationarity of the MT time series based upon empirical
mode decomposition (EMD) method and Hilbert spectrum is proposed in this paper. In this paper, we
use the EMD method, Hilbert transform and Marginal Hilbert spectrum to determine the impedance
tensor and compare the results with the traditional data processing method.

1 Introduction

The classic Fourier transform is based on the decomposition of the signal according to fixed basis functions
and a fixed frequency set determined by the sampling frequency and the data or window length. It assumes
that the signal is periodic or stationary. The Fourier spectrum defines uniform harmonic components globally,
therefore, it needs many additional harmonic components to simulate non-stationary data that are non-
uniform globally. As a result, it spreads the energy over a wide frequency range. Constrained by the energy
conservation, these spurious harmonics and the wide frequency spectrum cannot faithfully represent the true
energy density in the frequency space. The geomagnetic time series, however, are characterized by a change
of frequency content with time and non-stationarity. This change of frequency content may not imaged by
the Fourier analysis as the Fourier spectra averages over time. A way out is Hilbert spectrum, which does
not assume a set of fixed frequencies and allows the imaging of frequency content as a function of time.
However calculation of Hilbert spectra is unstable applied on geomagnetic time series directly. But with the
development of the EMD method, a new way of decomposing data exists, which lead to stable calculation
of the Hilbert spectra.

Hilbert-Huang transform (HHT), introduced by Huang on the basis of the classic Hilbert transform
(Huang et al., 1998) [1] [2] [3], is a new non-stationary signal processing technique. The key part of the method
is the Empirical Mode Decomposition (EMD), with which any complicated data set can be decomposed
into a finite and often small number of intrinsic mode functions (IMFs) that admit a well-behaved Hilbert
Transform to obtain the physical meaningful instantaneous frequencies (IF). The final presentation of the
results is an energy-frequency-time distribution, designated as the Hilbert spectrum. The EMD is an adaptive
decomposition of the data based on local characteristic time scales of a signal, it is applicable to non-
stationary processes, and therefore, it is highly efficient. With the Hilbert transform, the frequency content
in each IMF is not fixed but determined by the signal itself, and may change with time. Furthermore, since
the method eliminates the need for spurious harmonics to represent non-stationary signals, the corresponding
Hilbert spectrum will not lead to energy diffusion and leakage.

In this paper, the Empirical Mode Decomposition (EMD) method will be introduced in section 2. Based
on a simple example, we show how to apply the EMD to a time series to obtain the Intrinsic Mode Function
(IMF) and we illustrate the concepts of the Hilbert transform, instantaneous amplitude, instantaneous
frequency, Hilbert spectrum and marginal spectrum. In section 3, we apply the EMD method to the real
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MT data set and calculate the impedance tensor based on the Hilbert spectra. The results are compared to
the impedance calculated by the classical Fourier approach. Conclusion and outlook is given in section 4.

2 EMD method

The empirical mode decomposition (EMD) is based on the direct extraction of the energy associated with
various intrinsic time scales to generate a collection of intrinsic mode functions (IMF). Each IMF allows a
well-behaved Hilbert transform, from which the instantaneous frequency can be calculated. Thus, we can lo-
calize any event on the time as well as the frequency axis. The decomposition can be viewed as an expansion
of the data in terms of the IMFs. Each IMF can be, just like the underlying time series, non-stationary. Most
important of all, the IMFs are adaptive. The requirements for locality and adaptivity are very crucial for
non-stationary data, since we need the instantaneous frequency and energy rather than the global frequency
and energy defined by the Fourier spectral analysis.

In order to define a meaningful instantaneous frequency, the intrinsic mode functions (IMF) have to
satisfy two conditions [1] [2] [3]:

(1) in the whole data set, the number of extrema and the number of zero crossings must either equal or
differ at most by one; and

(2) at any point, the mean value of the envelope defined by the local maxima and the envelope by the
local minima is zero.

These requirements to intrinsic mode function are adopted because they represent the oscillation mode
imbedded in the data. Each IMF is capable of containing a modulated frequency and amplitude and there-
fore might be of non-stationary character.

An IMF represents a simple oscillatory mode as opposed to a simple harmonic function. Based on the
above definitions, any signal x(t) can be decomposed as follows [1] [2] [3]:

(1) Identify all the local extrema, and then connect all the local maxima by a cubic spline line as the
upper envelope.

(2) Repeat the procedure for the local minima to produce the lower envelope. The upper and lower
envelopes should cover all the data between them.

(3) The mean of upper and low envelope value is designated as m1; and the difference between the signal
x(t) and m1 is the first component, h1; i.e.

x(t)−m1 = h1

Ideally, if h1 is an IMF, then h1 is the first component of x(t).
(4) If h1 is not an IMF, h1 is treated as the original signal and repeat (1), (2), (3); then

h1 −m11 = h11

After repeated sifting, i.e. up to k times, h1k becomes an IMF, that is

h1(k−1) −m1k = h1k

Then it is designated as
c1 = h1k

The first IMF component is obtained from the original data. c1 should contain the finest scale or the shortest
period component of the signal.

(5) Separate c1 from x(t) by
r1 = x(t)− c1

where r1 is treated as the original data and repeat the above processes until the second IMF component c2
of x(t) has been derived. The above process is repeated n times until n-IMFs of the signal x(t) have been
determined.

r1 − c− 2 = r2
...

rn−1 − cn = rn
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The decomposition process can be stopped when rn becomes a monotonic function from which no more
IMFs can be extracted. We finally obtain

x(t) =
n∑

j=1

cj + rn

Thus, one can achieve a decomposition of the signal into n-empirical modes and a residue rn, which is
the mean trend of x(t). The IMFs c1, c2, · · · , cn include different frequency bands, where highest frequencies
are usually found in the first IMF and lower frequencies in subsequent IMFs. The frequency content in each
IMF changes with time and the frequency band found in one IMF might overlap with the frequency band
in another IMF. However, at each point in time, no two IMFs contain the same frequency.

For example, figure 1 shows a time series that is the sum of two sine waves with an modulated amplitude
wave given by:

x(t) = 2sin(2π × 15t) + sin(2π × 5t)sin(2π × 0.1t) + 4sin(2π × t)
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Figure 1: The time series example.

Figure 2 shows the IMFs of the time series. It is clear that the first IMF shows the 15Hz component of
the time series, the second IMF the 5Hz modulated signal and the third IMF the 1Hz signal, respectively.
The last IMF shows the trend of the signal.

In a second step, the IMFs are submitted to the Hilbert transformation process, which is defined as:

Y (t) =
1
π
P

∫ ∞

∞

X(t′)
t− t′ dt

′

where P indicates the Cauchy principle value. With this definition,X(t) and Y (t) form the complex conjugate
pair, which can be composed to an analytic signal Z(t), as

Z(t) = X(t) + iY (t) = A(t)eiθ(t)

where
A(t) =

√
X2(t) + Y 2(t)
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Figure 2: The 6 IMF components of time series.

and

θ(t) = atan(
Y (t)
X(t)

)

We call A(t) instantaneous amplitude and θ(t) instantaneous phase.
If we express the phase with a Taylor series then

θ(t) = θ(t0) + (t− t0)θ′(t0) +R

where R is small when t is close to t0. The analytic signal becomes

Z(t) = X(t) + iY (t) = A(t)eiθ(t) = A(t)ei(θ(t
0

)−t
0

θ′(t
0

))eitθ′(t
0

)eiR

and we see that θ′(t0) has the role of frequency if R is neglected. This makes it natural to introduce the
notion of instantaneous (angular) frequency, that is

ω(t) =
dθ(t)
dt

.

After performing the Hilbert transform to each IMF component, the original signal can be expressed as
the real part (RP) of the analytic signal in the following form:

x(t) = RP
n∑

j=1

Aj(t)eiθj(t) = RP
n∑

j=1

Aj(t)ei
∫

ωj(t)dt

Here we left out the residue rn on purpose, for it is either a monotonic function or a constant.

The above equation enables us to represent the amplitude and the instantaneous frequency as functions
of time in a three-dimensional plot, in which the amplitude can be contoured on the frequency-time plane.
This frequency-time distribution of the amplitude is designated as the Hilbert spectrum H(ω, t).

With the Hilbert spectrum defined, we can also define the marginal spectrum, h(ω) as

h(ω) =
∫ T

0

H(ω, t)dt

where T is the total data length. The Hilbert spectrum offers a measure of amplitude contribution from
each frequency and time, while the marginal spectrum offers a measure of the total amplitude contribution
from each frequency.
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Instantaneous Frequency An ambiguity inherent in the instantaneous phase renders equation above
impractical for calculating the instantaneous frequency: only the principal values of the phase are computed,
which causes 2π phase discontinuities. Instantaneous frequency is instead calculated by another equation,
directly derived from equation above:

ω(t) =
X(t)Y ′(t)−X ′(t)Y (t)

X2(t) + Y 2(t)

where the primes denote differentiation with respect to time [4].
Above equation requires two differentiations to calculate the instantaneous frequency. To avoid these

differentiations, three formulas that approximate instantaneous frequency and are faster to compute are
used[4].

ωa(t) =
1
T

atan
X(t)Y (t+ T )−X(t+ T )Y (t)
X(t)X(t+ T ) + Y (t)Y (t+ T )

ωb(t) =
1

2T
atan

X(t− T )Y (t+ T )−X(t+ T )Y (t− T )
X(t− T )X(t+ T ) + Y (t− T )Y (t+ T )

ωc(t) =
4
T

atan
X(t)Y (t+ T )−X(t+ T )Y (t)

(X(t) +X(t+ T ))2 + (Y (t) + Y (t+ T ))2

where T is sample period.

Now we can calculate the instantaneous frequencies and instantaneous amplitudes of each IMFs of the
above example. Figure 3 shows the instantaneous frequencies (left) and amplitude (right). Frequencies
components can be clearly seen in the left figure. It is obvious that the time series just contains discrete
frequencies as opposed to the continues frequency band in Fourier analysis. The small oscillations in the
frequency band and the inaccurate frequencies at the boundary are due to the numerical calculation.

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

Time(s)

Fr
eq

ue
nc

y(
H

z)

Instantaneous Frequencies of the IMFs

IMF1
IMF2
IMF3
IMF4
IMF5

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time(s)

A
m

pl
itu

de

Instantaneous Amplitude of IMFs

IMF1
IMF2
IMF3
IMF4
IMF5

Figure 3: The instantaneous frequency and amplitude of IMF components of the time series.

We can calculate the Hilbert marginal spectrum of the time series. The comparison with the Fourier
spectrum is shown in Figure 4. One can see that the peaks of the three components are clearly separated
and the resolution ratio is higher in the Hilbert marginal spectrum since there is severe energy leakage in
Fourier spectrum. This gives us an idea to apply this efficient method to estimate the apparent resistivity
from measured electro- and magneto- fields time series.

3 EMD and HT to the MT data processing

Now, we apply the EMD and HT to the magnetotelluric ”FLARE10” raw data measured near Faroe island.
The MT stations and the E- and B-field time series of MT station 11 are shown in Figure 5.

We applied EMD method to the E- and B-field time series to obtain the IMFs of both time series,
which for the E-field is shown in Figure 6. Through a Hilbert transform of each IMF, one can obtain the
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Figure 4: The comparison of Hilbert marginal spectrum and Fourier spectrum of the time series.

MT-Stationen

Seismisches Profil

Gravimetriedaten

(Satelliten)

0 2 4 6 8 10
x 104

−40

−20

0

20

40

A
m

pl
itu

de
(m

v/
km

)

Ex and By at MT station 11 

0 2 4 6 8 10
x 104

400

600

800

1000

1200

Time(s)

A
m

pl
itu

de
(n

T)

Figure 5: MT stations near Faroe island. The time series of E- and B-field at MT station 11.
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instantaneous frequencies and amplitudes of the signal. The instantaneous frequencies for all IMFs are are
shown in Figure 7. Through the Hilbert spectra it becomes obvious that the frequencies contained in the
signal are discrete a fact that is not visible in the Fourier analysis.
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Figure 6: The 15 IMF components of e(t).

Now, we can choose some frequency bands to calculate the Hilbert marginal spectrum of each frequency
band to calculate the impedance given by[5] [8] [9] [7] [10] [6](

Ex(ω)
Ey(ω)

)
=

1
μ0

(
Zxx(ω) Zxy(ω)
Zyx(ω) Zyy(ω)

)(
Bx(ω)
By(ω)

)

to calculate the transfer function.
For simplification, we just consider a 2D case in which case the above formula reduces to:{

Zxy = μ
0

Ex(ω)
By(ω)

Zyx = μ
0

Ey(ω)
Bx(ω)

In order to obtain the impedances, we introduce three strategies:
a). Chose a time window, compute the Hilbert marginal spectrum pair of E- and B-field w.r.t. certain

frequency band.
b). Shift the window with some percentage overlapping and compute another spectrum pair, and so on.
c). For all Hilbert marginal spectrum pairs, make a robust least square fit to obtain the ratio E(ω)/B(ω)

and the error.

One of the robust fit for frequency 0.0045Hz is shown in Figure 8.

22. Kolloquium Elektromagnetische Tiefenforschung, Hotel Maxičky, Děčín, Czech Republic, October 1-5, 2007 
                                                                                 73



1.7 1.72 1.74 1.76 1.78 1.8
x 104

10−4

10−3

10−2

10−1

100

Time (s)

Lo
g1

0(
Fr

eq
ue

nc
y)

 (H
z)

Frequencies of IMFs of Ex

IMF1
IMF2
IMF3
IMF4
IMF5
IMF6
IMF7
IMF8
IMF9
IMF10
IMF11
IMF12
IMF13
IMF14

1.7 1.72 1.74 1.76 1.78 1.8
x 104

10−4

10−3

10−2

10−1

100

Time (s)

Lo
g1

0(
Fr

eq
ue

nc
y)

 (H
z)

Frequencies of IMFs of By

IMF1
IMF2
IMF3
IMF4
IMF5
IMF6
IMF7
IMF8
IMF9
IMF10
IMF11
IMF12
IMF13
IMF14
IMF15

Figure 7: The instantaneous frequencies of 15 IMF components of e(t) and b(t). section: 1000s
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Figure 8: The robust least square fit of the Hilbert marginal spectrum pairs.

22. Kolloquium Elektromagnetische Tiefenforschung, Hotel Maxičky, Děčín, Czech Republic, October 1-5, 2007 
                                                                                 74



After estimation of the ratios E(ω)/B(ω) for each chosen frequency band, we can calculate the impedance
ρxy and ρyx and obtain the apparent resistivities. One estimation of the apparent resistivity of TM mode is
shown in Figure 9.
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Figure 9: The robust least square fit of the Hilbert marginal spectrum pairs.

4 Conclusion and outlook

In this paper, a new method to deal with the non-stationary MT time series is introduced. The method
is easily handled, delivers satisfactory results and may be applied to raw data. Since the EMD method is
not tied to specific basis functions but on the data itself, it is adaptive and highly efficient. EMD and HT
provide means to analysis the change in frequency content of geomagnetic time series at a high resolution.
We are investigating ways of using EMD and HT for transfer function calculations. We believe that it is an
interesting new approach to MT data processing which is worth developing forward.
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