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Summary

Forward transient electromagnetic modeling requires the numerical solution of a linear constant-coefficient initial-value

problem for the quasi-static Maxwell equations. After discretization in space this problem reduces to a large system

of ordinary differential equations, which is typically solved using finite-difference time-stepping. We compare standard

time-stepping schemes such as the explicit and unconditionally stable Du Fort-Frankel scheme with the more recent

Runge-Kutta-Chebyshev methods, which are designed specifically for parabolic initial value problems, with Krylov sub-

space techniques for the explicit solution of the initial value problem using the matrix exponential. Besides the classic

Arnoldi/Lanczos approximation we also consider restarted Arnoldi approximations as were recently proposed in (Eier-

mann & Ernst, 2006). These restarted schemes have the advantage of requiring only an a priori fixed amount of memory

storage, a significant aspect in the context of 3D simulations.

We also present a recent efficient implementation (Afanasjew, Ernst, Güttel, & Eiermann, to appear) of the restarted

Arnoldi method for evaluating the matrix exponential.

1 TEM – Governing Equations

Geophysical exploration using transient electromagnetic fields (TEM) is a technique for inferring properties of the sub-

surface by observing the response over time to controlled electromagnetic sources. Here we consider the forward problem

of computing the electromagnetic field due to a vertical magnetic dipole, a configuration often used in practice.

The governing equations are the quasi-static Maxwell’s equations

∇×
(
1
μ
∇× e

)
+ ∂t σe = −∂t je, (1)

where

e = e(x, t) is the electric field,

μ = μ(x) is the magnetic permeability,

σ = σ(x) is the electric conductivity and

je = je(x, t) is the impressed source current density.

The spatial domain is typically a parallelepiped Ω ⊂ R
3 whose upper boundary is either at ground surface level or

above it. In the simplest model, the perfect conductor boundary condition n× e = 0 is imposed on all six faces of ∂Ω.

The impressed source current is typically of shut-off type, i.e., of the form

je(x, t) = q(x)H(−t), (2)

where H denotes the Heaviside unit step function and the vector field q describes the spatial current pattern.

2 Semidiscretization in Space

Omitting the impressed source current je(x, t) in (1)—since we are looking at times t > 0—the PDE becomes

∂te = − 1
σ
∇×

(
1
μ
∇× e

)
.
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Figure 1: Leap-frog iteration of the Du Fort-Frankel method with time-interleaved electric and magnetic fields (left).

Considered computational strategies for Krylov subspace methods (right).

To discretize this equation in space, we introduce a graded tensor-product mesh on the spatial domain Ω, which is refined

near the source. The curl-curl equation is then discretized using the well-known Yee finite-difference scheme (Yee, 1966),

which transforms the PDE to the linear first-order ordinary differential equation

∂te = Ae, e(t0) = e0, (ODE)

where the matrixA represents the discrete action of−1/σ∇×(1/μ∇× ·) on the spatial discretization of the electric field e.
The solution of (ODE) is explicitly given by

e(t) = e(t−t
0

)A e0. (3)

Our objective, given an initial field e0 at t = t0, is to evaluate the solution e(t) at given discrete time values t1 < t2 <
· · · < tn in an integration interval [t0, tn].

3 Time-Stepping

Semi-discretized initial-value problems like (ODE) are traditionally solved using a time-stepping scheme. The reference

scheme for our comparisons is the Du Fort-Frankel scheme, an explicit time-integrator with a weak stability constraint on

the time step, which was proposed for TEM forward modelling in (Wang & Hohmann, 1993).

Given an initial electric field e0 at time t0, and an initial magnetic field h0 at time t0 +Δt0/2 we perform a leap-frog

iteration (Figure 1, left). In each step we first compute the electric field ej from ej−1 and hj−1 and then the magnetic

field hj from hj−1 and ej . With δmin denoting the smallest mesh size this method is stable if

Δtj = tj+1 − tj < δmin

√
μminσmintj

6
.

Apart from Du Fort-Frankel we tested ROCK4, an implementation of fourth order Chebyshev methods. These explicit

Runge-Kutta methods are particularly well suited for parabolic initial values problems like those discussed here.

4 Krylov Subspace Methods

As an alternative to time-stepping, one could evaluate (3) directly, which entails multiplying a matrix exponential with

the initial vector e0. As the matrix A is large and sparse, this can be achieved efficiently with a Krylov subspace approx-

imation. This gives rise to various implementations depending on time and memory constraints. Some computational

strategies based on Krylov subspace methods are illustrated in Figure 1 (right).

4.1 Krylov Subspace Methods for Matrix Functions

Given a square matrix A ∈ R
N×N (large and sparse), a vector b ∈ R

N and a scalar function f(x) which is defined in a

neighborhood of the eigenvalues of A, then

f(A) = p(A),
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where p(·) is a polynomial of degree < N that Hermite-interpolates f in the eigenvalues of A. By Km(A, b) we denote

them-th Krylov space of b and A, that is

Km(A, b) = span{b, Ab, A2b, . . . , Am−1b}.
Since, by definition, f(A) is a polynomial in A of degree < N there holds

f(A)b ∈ KN (A, b).

Krylov subspace methods approximate f(A)b by suitable vectors fm = pm(A)b ∈ Km(A, b) from lower order Krylov

spaces, i.e., withm� N . The basic steps are as follows:

• Generate an orthonormal basis Vm = [v1,v2, . . . ,vm] of Km(A, b) using the Arnoldi process, yielding the pro-

jected matrix Hm := V T
mAVm ∈ R

m×m, which is an upper Hessenberg matrix.

• The Krylov subspace approximation of order m is defined as

fm := Vmf(Hm)V T
mb = ‖b‖Vmf(Hm)[1, 0, . . . , 0]T .

If A is Hermitian then the Lanczos process, in place of the Arnoldi process, may be used to generate the basis. In this

caseHm is tridiagonal and, instead of orthonormalizing each vector vm against all preceding vectors v1, . . . ,vm−1, there

exists a three-term recurrence involving only vm−2, vm−1 and vm.

4.2 Time-Stepped Arnoldi Method

For each time-step j we compute the Arnoldi approximation of orderm = m(j)

fm
j+1 ∈ Km(A,fm

j ) for f(x) = e(tj+1

−tj)x,

where fm
0 = e0. From error analysis of Krylov subspace methods it is known that to guarantee a certain relative error of

the Krylov approximation fm
j+1 we should choose

m = m(j) ∼ ‖(tj+1 − tj)A‖1/2.

The drawback of this method is that we build a new Krylov space for each time-step which may be computationally

unfeasible.

4.3 Arnoldi Method with Recycling

For each time step j we compute the Arnoldi approximation

fm
j ∈ Km(A,e0) for f(x) = e(tj−t

0

)x,

where we choosem = m(j) ∼ ‖(tj − t0)A‖1/2.

Our proposed method reuses the computed basis vectors v1,v2, . . . ,vm(j) for the time-step j + 1, just adding the

vectors vm(j)+1,vm(j)+2, . . . ,vm(j+1).

This approach was found to be most efficient, although the number m(j) of required Krylov vectors is slightly larger

than that for the time-stepped Arnoldi method, since the time interval is longer.

4.4 Restarted Arnoldi Method

The restarted Arnoldi method introduced in (Eiermann & Ernst, 2006) generates a succession of Krylov spaces of a fixed

maximal sizem. The approximations are then chosen from the union of all Krylov spaces generated up to that point. The

advantage is that one never needs to store more than m basis vectors. Moreover, for the exponential function required in

this context, the superlinear convergence of the unrestarted method is retained.

In (Afanasjew et al., to appear), this method was further enhanced by evaluating f(Hm) using a suitable rational

approximation of fixed order, which amounts computationally to the solution of a small number of linear systems of

equations with coefficient matrix Hm, a small, constant amout of work in each restart cycle. Moreover, error estimators

giving upper and lower bounds of the approximation error can be generated inexpensively in each step.
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Figure 2: Du Fort-Frankel/ROCK4. Computational effort.
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Figure 3: Lanczos method with time-stepping. Herem is constant for all time steps j.

5 Numerical Experiments

We solve (1) on a cube with constant conductivity and permittivity. The finite-difference mesh consists of 58 × 58 × 58
cells, resulting in 565, 326 degrees of freedom for the electric field. We evaluate the solution at 24 logarithmically

equispaced times between 10−6 s and 10−3 s. All computations were performed until the relative error was below 10−2.

In Figure 2 we compare the performance of the Du Fort-Frankel method with the more sophisticated ROCK4 method.

As can be seen in the bar graphs, ROCK4 gets outperformed despite perfoming fewer time steps. We believe that this is

due to its relatively high per-step overhead compared to the simplistic iteration scheme in Du Fort-Frankel.

Turning to the Krylov subspace methods, Figure 3 shows the computational effort for the time-stepping strategy. The

times are merely illustratory since using a constant Krylov subspace size for every (exponentially growing) time step is

wasteful. The figure nicely relates the size of the Krylov subspace to the achievable relative error.

The tradeoff between computation time and memory consumption can be seen in Figure 4. We compare the running

time—total and per time step—and the size of the required Krylov subspace, that directly corresponds to the required

memory. In this example, having enough memory available can save up to a third of the overall computation time.

Table 1 summarizes the performance of the restarted Arnoldi method for a single large time step from 10−6 s to

10−3, requiring an error below 10−12. While the non-restarted Krylov algorithms perform faster they require a—in most

cases—prohibitively big amount of memory compared to the constant storage requirements for the restarted variant.

Finally, Figure 5 contains a plot of the transient of the electric field at a distance of 26.2 m from the source. We see a

good agreement between the transients produced by both methods. The faster Krylov method is even somewhat closer to

the analytic solution since it—in contrast to the Du Fort-Frankel method—does not require discretization in time.

m time[s] mvp error

70 112 1400 9.13e-13

90 118 1350 2.01e-13

full 2-pass 144 2144 9.93e-13

full 1-pass 86 1072 9.93e-13

Table 1: Computing times for the restarted Arnoldi method for various restart lengths.
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Figure 4: Comparing Lanczos time-stepping and recycling.
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Figure 5: Transient electric field at a distance of 26.2 m from the source.

Conclusions

Krylov subspace approximation is an efficient computational tool for integrating the initial value problem (ODE), arising

in TEM forward modelling. The restarted Arnoldi method for the matrix exponential offers the possibility for the user

to tradeoff storage requirements against speed, a possibility not offered by competing Krylov subspace methods such as

SLDM.
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