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Idea

Magnetotelluric array data that were recorded by
simultaneously operated instruments can be used
to estimate horizontal magnetic transfer functions
from the linear relation H1

h = WH2
h, where H1,2

h

are the horizontal magnetic fields at two sites 1 and
2 and W is the 2 × 2 horizontal magnetic transfer
function. These transfer functions can be used (I) to
study induction anomalies independent of the even-
tually distorted electric field (II) to identify time
series segments, which yield strongly disturbed es-
timates of the transfer function W. The latter is
the case, if W differs considerably from an identity
matrix (Ritter et al., 1998).
Here, we intend to synthesize an artificial noise-
free reference site for later remote reference process-
ing. Such a synthetic dataset can be constructed
from clean time series segments, identified from es-
timates close to the expected transfer function W.
Concatenation of time series segments recorded at
different locations is problematic, if the spatial de-
pendency of the magnetic fields and of W is not
taken into account. Therefore, we also require the
full array response at all times, which we aim to
reconstruct from estimated transfer functions be-
tween sites with overlapping runtimes.

The Parkfield Array data

In spring 2005, a magnetotelluric (MT) survey was
undertaken to study the electric conductivity struc-
ture of the San Andreas Fault and its surroundings
close to Parkfield (cf. Becken et al., this volume,
for a more detailed description of the survey).
Data were recorded at 41 combined broad-band and
long-period sites (BMT and LMT) within a 50 km
times 50 km array and an additional 40 BMT sites
along a profile across the SAF. The LMT and BMT
data were collected using up to 30 synchronously
operated instruments (cf. Fig.1). Blue stars in
Figure 1 indicate LMT sites and red circles indi-
cate BMT sites. Light blue stars are additional
LMT sites acquired in a later stage of the survey
(S. Park, University of Riverside, CA). The black
line marks the surface trace of the SAF according
to Rymer et al., (2003). The white star indicates
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Figure 1: Regional map of the MT survey area
around the SAFOD drilling site (white star) near
Parkfield, California. Stars denote combined long-
period/broad-band sites and red dots denote broad-
band sites. The surface trace of the San Andreas
Fault is indicated by a black line.

the SAFOD borehole, which is in the middle of the
profile. SAFOD (San Andreas Fault Observatory
at Depth) is part of EarthScope project. Its aim is
to provide data on the composition and mechanical
behaviour of a major active fault zone at depth.

MT synchronous time series

The runtime plot in Figure 2 shows all sites and
their recording times. Yellow bars mark Castle
data, red bars are SPAM data and blue bars are
LMT data. The recordings at the first sites start
on March 19th and end on May 28th. The sam-
pling frequency for SPAM and Castle data is 50 Hz
and for LMT data it is 2 Hz. There are many syn-
chronously operated LMT sites.

An Example of synchronously recorded 5-channel
time series at seven sites are shown in Figure 3. De-
picted data were recorded using two different flux-
gate sensors (Lemi, Magson). Note the coherency
of magnetic fields in the given time segment of 36
hours, and the phase shift and amplitude variation
from site to site in the electric field.
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Figure 2: Run time plot of all sites; red bars are
SPAM data, yellow bars are Castle (BMT) data and
blue bars are LMT data.

Horizontal magnetic transfer func-
tions

Between all simultaneously recording sites of the
Parkfield array horizontal magnetic transfer func-
tions W were computed. An example of the com-
ponent Wxx between site 4 and 5 is shown in Figure
4. This result was obtained using a single site pro-
cessing (Egbert, 1986). Red symbols indicate BMT
data and blue symbols mark LMT data. There is
an overlap of approx. one decade between these two
data types where the data match nearly perfectly.
Both setups are therefore well calibrated and were
working properly. If the fields at site 4 and 5 did not
contain any anomalous parts, the real part of the
horizontal magnetic transfer function Wxx would be
1 over all periods and the imaginary part would be
0 (1D earth response). In the given example, the
real part of Wxx is highly disturbed around 10 s in
the so-called dead band (low energy of MT signals).

Figure 5 shows the magnetic response function of
site 4 and 5 calculated with remote reference pro-
cessing (Egbert, 1986). A comparison of these re-
sults and the results of the single site processing
shows an improvement of the data quality at peri-
ods around 10 s. Therefore, incorporating a clean
remote reference can be extermely helpful to im-
prove the estimation of transfer functions.
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Figure 3: Time series of seven synchronously
recorded sites; the first two diagrams show the elec-
tric channels Ex and Ey; the other three are the
magnetic channels Bx, By and Bz.

Figure 4: Results of single site processing (Egbert,
1986) of measured data, horizontal magnetic trans-
fer function of site 4 and 5, red symbols mark BMT
and blue symbols mark LMT data

Figure 5: Horizontal magnetic transfer function af-
ter remote reference processing (Egbert, 1986) of
site 4 and 5, red symbols mark BMT and blue sym-
bols mark LMT data
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Figure 6: First approach using the finite element
method in 1D and four elements - matrix B is not
included; red circles mark input or measured data;
black, blue, red and green functions are interpola-
tion results, they are continuous and continuously
differentiable.

Interpolating magnetic fields

The induced surface magnetic field is a smooth
function in space. This implies, that a smooth inter-
polation of measured magnetic fields is a promising
approach to reconstruct the entire array response.
We start our approach with the assumption, that
we know the magnetic field responses at several lo-
cations due to a unit magnetic field in the x− and
the y−direction. This means, that we suppose that
we have estimated transfer functions between the
locally recorded field and the normal field (not af-
fected by any induction anomaly) instead of the lo-
cal field at another site (which has an anomalous
part). Under these circumstances, the columns of
W can be considered as the principal horizontal
magnetic fields.
Because the magnetic field is irrotational in the air
half-space, i.e. ∇ ×H = 0, its horizontal compo-
nents are dependent on each other via the relation

dHx

dy
=

dHy

dx
. (1)

Condition (1) must be satisfied by our interpolation
routine.
Hence, we can formulate the following optimization
problem: Find the smoothest horizontal magnetic
field distribution Hh, which fits the measured data
to within their error bars while satisfying the rela-
tion given in equation (1).
For this purpose, we tested several functional pa-
rameterization of the magnetic field. First, we
tried a polynomial description following an idea
of Schmucker (personal communication with M.
Becken). The derivatives in equation (1) are easily
incorporated using a polynomial approach, which
makes the use of polynomials attractive for our

problem. Though polynomials can be adequate to
describe the general trend of the magnetic field such
as the shape of an inhomogeneous source field, it
turned out that they are not flexible enough to rep-
resent complicated responses (in the MT case and
the presence of anomalies).
More complicated field distributions may be rep-
resented using piecewise polynomials, i.e. spline
functions. With spline functions, it was however
too complicated to include the relation between Hx

and Hy.
Therefore, we adopted the finite element approach
to our problem. In a first step, we reduce the prob-
lem to the 1D case to develop the formalism. Using
the notation of finite elements, we formulate a vari-
ational problem of the following type: determine
the magnetic field, which has minimum curvature,
i.e. ∫

H
′′

x (ξ)2dξ = uT Su→ min! (2)

under the constraint of fitting the data and the po-
tential field condition. Here,u are the knot variables
and S is the stiffness matrix. In this case, we use
a cubic approach, which is necessary to produce a
continuously differentiable function. Measured data
are collected in vector b and represented in terms
of the knot variables u via the relation

Au = b (3)

where A is a ’forward modeling operator’. Rela-
tion (1) between the derivatives of magnetic field
components Hx and Hy is expressed as

Bu = 0 (4)

A and B depend on the ansatz functions, in this
case cubic polynomials. In equation (5) these ma-
trices are put together into one main formula that
has to become minimum.

F = uT Su + (Au−b)T λ1 + (Bu)T λ2 = min. (5)

The derivatives of (5) can be written as a product
of a matrix and a vector shown in equation (7).

Fu = Su + AT λ1 + BT λ2

Fλ1 = Au− b (6)
Fλ2 = Bu

 S AT BT

A 0 0
B 0 0

 u
λ1

λ2

 =

 0
b
0

 (7)

Here, the vectors λ1 and λ2 are Lagrange multipli-
ers, vector u is the vector of coefficients that needs
to be determined. Figure 6 shows the first result:
fitting one component of the magnetic field using
cubic functions and four elements in 1D.

300

21. Kolloquium Elektromagnetische Tiefenforschung, Haus Wohldenberg, Holle, 3.-7.10.2005, Hrsg.: O. Ritter und H. Brasse



Outlook

After adopting the finite element method to a prob-
lem similar to ours in 1D, it has to be developed in
2D as well to match the requirements (two magnetic
field components Hx and Hy).
Dealing with measured data that contain noise, er-
ror bars have to be included in the solution (7).
Moreover, to avoid oscillations in the interpolated
field, a regularization trading off between data fit
and smoothness constraint has to be included. Fi-
nally, not the fields directly but the transfer func-
tions W have to be incorporated iteratively, using
W as an initial guess for the magnetic fields them-
selves and WH0 for subsequent iterations (where
H0 is the reference field).
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