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1. Introduction and Summary

By electromagnetic induction in the mantle, the geomagnetic secular variation (SV) is
distorted on its passage from the Core-Mantle Boundary (CMB) to the surface of the
Earth: It gets delayed, broadened and skewed. An investigation of the impact of mantle
conductivity on the backpropagation of the observed SV to the CMB is of interest for
instance for an inference of the tangential fluid flow in the core close to the CMB from
a reliable knowledge of the radial magnetic field component and its time variation at the
CMB [ e.g., Benton & Whaler (1983), Ballani et al. (2002) ]. There have been also some
indications that the diffusion of the SV through the mantle can give some relevant con-
straints on the poorly known Lower Mantle conductivity [ e.g., McDonald (1957), Backus
(1983), Holme (1998) ].

For the diffusion of the SV, all reasonable models of mantle conductivity qualify the man-
tle as a weak conductor, since all relevant time constants of mantle diffusion (see Sect. 3)
as free-decay time of current systems, delay, smoothing and skewing time of an impulse
propagating from the CMB upwards, are at most of the order 100 -200 days (see Ta-
bles 2 and 3) and therefore are small compared with the time scale of SV (decades of
years).

We express in Sect. 3.3 delay, smoothing and skewing times in terms of integrals over the
mantle conductivity and show in Sect. 3.4 that simple relations exist between these times
and the times of free decay of mantle currents. – Although formally two sets of time
constants for radial and tangential magnetic components exist, the boundary conditions at
the CMB attribute a geophysical significance as delay time only to the former.

2. Basic equations

We assume spherical coordinates (r, ϑ, ϕ) with the CMB at r = c and the surface of the
Earth at r = a. Let σ = σ(r) be the conductivity distribution with σ(r) = ∞ for r < c and

91

21. Kolloquium Elektromagnetische Tiefenforschung, Haus Wohldenberg, Holle, 3.-7.10.2005, Hrsg.: O. Ritter und H. Brasse



σ(r) = 0 for r > a. Neglecting displacement currents and using at first a harmonic time
dependence ∼ exp(iωt), the basic differential and constituitive laws are

∇ ×H = J, ∇ × E = −iωB (2.1)

and
B = µ0H, J = σE, (2.2)

where H, B, E and J are, respectively, the vectors of the magnetic field, the magnetic flux
density, the electric field and the electric current density.

Since ∇ · B = 0 and ∇ · J = 0, the solenoidal vectors B and J admit a Mie decomposition
into a poloidal and toroidal part. For B this decomposition is

B = ∇×∇×(rPB) + ∇×(rTB). (2.3)

Because of
Br = −r∇2

s PB, µ0Jr = −r∇2
sTB, (2.4)

these components depend on one scalar only. Here ∇2
s is the tangential part of the Laplace

operator, which does not involve differentation in r-direction. The knowledge of Br

and Jr therefore allows a separate determination of PB and TB. Generally, lateral non-
uniformities inside the mantle couple the scalars PB and TB. However, under the present
assumption that the conductivity depends on r only, these modes are not getting mixed
inside the layered mantle and therefore satisfy uncoupled differential equations

∇2PB = iωµ0σ(r)PB, ∇2TB −
σ′(r)
rσ(r)

∂r(rTB) = iωµ0σ(r)TB. (2.5)

The continuity of the tangential components of B and E at layer boundaries requires the
continuity of

∂rPB, PB, TB and σ−1∂r(rTB). (2.6)

Since Jr(r) = 0 in r ≥ a, the condition Jr(a) = 0 implies according to (2.4) that TB(a) = 0.
Therefore the toroidal part of B vanishes at r = a and the observed surface magnetic field
is purely poloidal.

Now we have to discuss the boundary conditions for PB at r = c and for r → ∞. On
the surface r = c of the perfectly conducting core the radial component Br of the currents
induced in the mantle will vanish. Therefore at the CMB Br is presented by the pure SV
source field BS V

r , created by the fluid motion in the core. With (2.4) this gives rise to the
boundary condition

−c∇2
s PB(r = c) = BS V

r , (2.7)

where the source BS V
r is assumed to be given. Since B has to vanish for r → ∞, we have

at infinity the boundary condition

PB(r)→ 0 for r → ∞. (2.8)
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In the case of a layered mantle it is not necessary to exclude current leakage from the
core into the mantle, because this poloidal current flow gives rise to a toroidal magnetic
field only, which cannot be seen at the surface of the Earth. This is different for a mantle
with lateral non-uniformities, where the non-uniformity can partially convert the toroidal
magnetic source field into a poloidal mode, which then is observable at the surface of the
Earth.

The well-known general solution of the left equation of (2.5) in spherical coordinates is

PB(r, ϑ, ϕ) =
1
r

∞
∑

`=1

f`(r) S `(ϑ, ϕ), (2.9)

where S `(ϑ, ϕ) is a spherical harmonic of degree ` and f`(r) is a solution of the ordinary
differential equation

f ′′` (r) =

[

`(`+1)
r2

+ iωµ0σ

]

f`(r). (2.10)

An additional term ` = 0 in (2.9) would depend on r only and therefore does not con-
tribute when forming B according to (2.3).

In the following we are considering ratios of corresponding spectral field components at
r = a and r = c. Let

PB`(r, ϑ, ϕ) :=
1
r

f`(r)S `(ϑ, ϕ).

a spectral component of PB of degree `. Then (2.3) yields

B`r(r, ϑ, ϕ) =
`(` + 1)

r2
f`(r) S `(ϑ, ϕ), (2.11)

B`ϑ(r, ϑ, ϕ) =
1
r

f ′` (r) ∂ϑS `(ϑ, ϕ), (2.12)

B`ϕ(r, ϑ, ϕ) =
1

r sinϑ
f ′` (r) ∂ϕS `(ϑ, ϕ), (2.13)

where f (r) is a solution of (2.10) vanishing for r → ∞. Then the transfer functions ΓR
`
(ω)

and ΓT
`
(ω) for the radial and tangential magnetic components are defined as

ΓR
` (ω) :=

B`r(a, ϑ, ϕ)
B`r(c, ϑ, ϕ)

=
c2

a2
· f`(a, ω)

f`(c, ω)
, (2.14)

ΓT
` (ω) :=

B`ϑ(a, ϑ, ϕ)
B`ϑ(c, ϑ, ϕ)

=
B`ϕ(a, ϑ, ϕ)

B`ϕ(c, ϑ, ϕ)
=

c
a
·

f ′
`
(a, ω)

f ′
`
(c, ω)

. (2.15)

In the ‘low-induction’ case, defined by ωµ0σ(r)r2 � `(`+1) in c < r < a, the appropriate
solution of (2.10) is f`(r) ∼ r−` and therefore in this limit

ΓR
` = Γ

T
` = (c/a)`+2. (2.16)
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Figure 1: Model of the electrical conductivity in the layered mantle.

Now we shall express the radial and tangential components at r = c and r = a in terms of
the SV source field and ΓR,T (ω). The source enters via (2.7). The expansion of the given
BS V

r into spherical harmonics is

Br(c, ϑ, ϕ, ω) = BS V
r (ϑ, ϕ, ω) =

∞
∑

`=1

S S V
` (ϑ, ϕ, ω). (2.17)

For a single degree ` we obtain

B`r(c, ϑ, ϕ, ω) = S S V
`

(ϑ, ϕ, ω), B`ϑ(c, ϑ, ϕ, ω) = − 1
` + 1 ·

ΓR
` (ω)
ΓT
` (ω)

· ∂ϑS S V
`

(ϑ, ϕ, ω),

B`r(a, ϑ, ϕ, ω) = ΓR
`
(ω) S S V

`
(ϑ, ϕ, ω), B`ϑ(a, ϑ, ϕ, ω) = − 1

` + 1 · Γ
R
`
(ω) · ∂ϑS S V

`
(ϑ, ϕ, ω).

(2.18)
A typical conductivity model, for which we like to compute the transfer functions ΓR

`
(ω)

and ΓT
`
(ω) is the 9-layer model shown in Fig. 1.

3. Time constants of mantle diffusion

3.1. General ideas

In this section it is investigated, how a geomagnetic signal, diffusing from the CMB up-
wards, is distorted by the conductivity of the mantle. The action of the mantle as a low-
pass filter for the SV has been investigated in great depth and detail by Backus (1983).
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The present more elementary approach resumes Backus’ concept of delay and smooth-
ing times, adds the skewness time quantifying asymmetry and links all time constants to
the free-decay times. Moreover, attention is drawn to the existence of two sets of time
constants both for the radial and tangential magnetic component. Due to the boundary
condition (2.7) at the perfectly conducting core, however, only the radial time-constants
describe the delayed arrival of an impulse originating from the CMB.

Let B`(r, t) and B`(r, ω) be generic magnetic field components in the time and frequency
domain and let Γ`(ω) the generic version of the transfer functions (2.14) and (2.15). Then
we have in the frequency domain

B`(a, ω) = Γ`(ω)B`(c, ω) (3.19)

and therefore in the time domain

B`(a, t) =

t+
∫

−∞

B`(c, t
′)γ`(t − t′) dt′ (3.20)

where the convolution kernel γ`(t) is the Fourier transform of Γ`(ω),

γ`(t) =
1

2π

+∞
∫

−∞

Γ`(ω)eiωt dω. (3.21)

In (3.20) we have already made use of fact that γ`(t) is a causal function satisfying
γ`(t) = 0 for t < 0. Formally this follows from the fact that Γ`(ω) is analytic outside the
positive imaginary axis. On this semiaxis are lying at ω = iλ` j, λ` j > 0, an infinite number
of poles, briefly examined in Sect. 3.4. [ The poles of ΓR

`
(ω) define the decay constants of

freely decaying mantle-current systems of degree `. ] For t < 0 the contour in (3.21) can
be closed by a large semicircle in the lower ω-halfplane, which does not contribute to the
integral. From the analyticity of Γ`(ω) in the semicircle then follows the causality of γ`(t).

For the conductivity model of Fig. 1 the convolution kernels γR
`
(t) and γT

`
(t) are shown in

Fig. 2 for the first three degrees.
From the inversion of (3.21),

Γ`(ω) =

∞
∫

0

γ`(t)e
−iωt dt, (3.22)

follows with (2.16), i.e. with ΓR
`
(0) = ΓT

`
(0) = (c/a)`+2, that

∞
∫

0

γR
` (t) dt =

∞
∫

0

γT
` (t) dt = (c/a)`+2. (3.23)
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Figure 2: Convolution kernels γR
`
(t) and γT

`
(t) for the first three degrees derived from the

conductivity model of Fig. 1. The logarithmic scales mask the relation (3.23).

Physically, γR
`
(t) is the delayed, broadened and skewed surface response to a δ(t)-impulse

in the magnetic radial component at the CMB. The stronger delayed and smoothed re-
sponse γT

`
(t) has no obvious physical meaning. However, its important role in the propa-

gation of the tangential components from r = c to the surface r = a via the convolution
integral (3.20) is elucidated in Sect. 3.2.

Delay, broadening and skewness of the ‘probability density distribution’ γ(t)/Γ`(0) can be
expressed, respectively, by the time constants τ`, σ` and %`, which are derived from the
first three moments of γ(t)/Γ`(0). Let m`k and µ`k be the k-th moments about t = 0 and
about the mean, i.e.

Γ`(0) m`k :=

∞
∫

0

γ`(t) tk dt =
dkΓ`(ω)
d(−iω)k

∣

∣

∣

∣

∣

∣

ω=0

, Γ`(0) µ`k :=

∞
∫

0

γ`(t) (t − τ`)k dt (3.24)

with τ` := m`1. The connection between m`k and µ`k is

m`1 = τ`, m`2 = µ`2 + τ
2
` , m`3 = µ`3 + 3µ`2τ` + τ

3
` . (3.25)

With the further definitions
σ2
` := µ`2, %3

` := µ`3 (3.26)
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the time constants are reversely given by

τ` = m`1, σ2
` = m`2 − m2

`1, %3
` = m`3 − 3m`2m`1 + 2m3

`1, (3.27)

The skewness %3
`

can have both signs, where a positive skewness denotes a long tail of γ`(t)
in direction of increasing t. An inspection of Fig. 2 shows that this case has to be expected.
According to (3.24) a low-frequency approximation of Γ`(ω) with an approximation error
of O(ω4) is

Γ`(ω) ' Γ`(0) [ 1 + (−iω) m`1 + (−iω)2 m`2/2 + (−iω)3 m`3/6 ] (3.28)

= Γ`(0) [ 1 + (−iω)τ` + (−iω)2 (µ`2 + τ
2
`)/2 + (−iω)3 (µ`3 + 3µ`2τ` + τ

3
` )/6 ].

This low-frequency approximation applies, if the characteristic time constant TS V of the
secular variation (i.e. ω = 1/TS V) is much larger than the time constants τ`, σ` and %`,
which are properties of the mantle and therefore depend on conductivity only. Table 2
gives for the model of Fig. 1 mantle time constants less than 1000 days, whereas TS V will
be at least decades of years. In this case the Br-signal at r = a will be essentially a replica
of the signal at the CMB, reduced by the geometric factor Γ`(0) and delayed by τ`. The
two higher order terms in (3.28) introduce some broadening and skewing.

The first three moments fix only the given terms in the power series (3.28) and leave γ`(t)
non-unique. We shall briefly consider only two different choices:

• Skewed Gaussian distribution

Γ`(ω) ' Γ`(0) exp[ (−iω)τ` + (−iω)2 µ`2/2 + (−iω)3 µ`3/6 ] (3.29)

= Γ`(0) exp[ (−iω)τ` + (−iω)2 σ2
`/2 + (−iω)3 %3

`/6 ], (3.30)

If also fourth moments are included, the first neglected term in the exponent of
(3.29) would be of the more complicated form (−iω)4(µ4 − 3µ2

2)/24 (Backus 1983,
p. 719; Fisz 1976, p. 139), where the expression µ4 − 3µ2

2 is the excess or kurtosis,
vanishing for a Gaussian distribution. Moreover, the first neglected term would
lead to a divergent integral when Γ`(ω) is integrated over all frequencies to obtain
an approximation for γ`(t). The approximate convolution kernel derived from the
three constants is, using (3.21),

γ`(t) '
Γ`(0)
π

∞
∫

0

exp(−ω2σ2
`/2) cos[ω(t − τ`) + ω3%3

`/6 ] dω, (3.31)

−∞ < t < +∞. This integral cannot be evaluated in closed form. However, for
%` = 0 we obtain the symmetric Gaussian distribution,

γ`(t) '
Γ`(0)
√

2πσ`

exp

[

− (t − τ`)2

2σ2
`

]

, −∞ < t < +∞. (3.32)

Γ`(ω) has singularities (infinities) in both ω-halfplanes. Therefore γ`(t) is non-
causal. This is avoided in the next example.
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• Gamma distribution
The transfer function

Γ`(ω) ' Γ`(0)
(1 + iω/β`)α`

, α` ≥ 1, β` > 0, (3.33)

which is analytic in the lower ω-halfplane, leads to a causal convolution function.
Γ`(ω) disposes only of the two parameters α` and β` and reproduces the first three
terms of (3.28) by choosing

α` = (τ`/σ`)
2, β` = τ`/σ

2
` .

Since σ` ≤ τ` [ see (3.67) ], we have in fact α` ≥ 1. The skewness is already
fixed, %3

`
= 2α`/β3

`
= 2σ4

`
/τ`. The convolution function resulting from (3.33) is the

Gamma distribution

γ`(t) '
Γ`(0) (β`t)α`

Γ(α`)t
exp (−β`t), t ≥ 0. (3.34)

An example comparing the different approximations is given in Fig. 3.– Other possible
causal two-parameter distributions are the lognormal and the Weibull distribution.

Figure 3: The convolution function γR
1 (t) from Fig. 2 and its approximations by the skewed

Gaussian distribution (3.31), the Gaussian distribution (3.32) and the Gamma
distribution (3.34). The non-causal Gaussian distributions have long tails for
t < 0 and therefore the amplitudes in t > 0 are diminished.
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3.2. Diffusion pattern of radial and tangential magnetic
components

The geophysical significance of radial and tangential time constants will now be illus-
trated by transforming (2.18) into the time domain. We use again the conductivity distri-
bution of Fig. 1 and assume as source at the CMB

S S V
` (ϑ, ϕ, ω) =

T
2
· e−ix sin x

x(1 − x2/π2)
· P`(cosϑ), x := ωT/2,

corresponding in the time domain to

S S V
` (ϑ, ϕ, t) =

{

sin2(πt/T ) · P`(cosϑ), 0 ≤ t ≤ T,
0, else,

(3.35)

which is a soft Br-impulse of duration T with maximum value 1 at t = T/2.

Presented are results for T = 200 d and ` = 1. Fig. 4 shows the time variatiom of the
radial (red / thick) and tangential (blue / thin) component at the CMB (bottom) and at the
surface of the Earth (top). In the center are displayed – in reverse time – the convolu-
tion kernels γR,T

`
(t), which link the fields at r = c and r = a via the convolution integral

(3.20). The presentation is fully linear and therefore is not easily reconciled with the
double-logarithmic plot in Fig. 2 containing the same information. [ The convolution is
performed by shifting the central panel to the left (say). For a fixed position of this panel,
coinciding ordinates of the central and bottom panel are multiplied and integrated. The
result is assigned in the top panel to that time, which is the (constant) sum of coinciding
times in the central and bottom panel, e.g. t = 500 d in Fig. 4. ] The components are
shown at those colatitudes, which report at the surface the greatest positive values, i.e. for
B`r at ϑ = 0 and for B`ϑ at ϑ = 90◦.

Whereas at the CMB the radial component shows the unipolar variation (3.35), the pre-
dominantly induced tangential component is bipolar: Broadly speaking, the ascending
branch of B`r induces B`ϑ > 0 and B`ϑ < 0 is induced by the descending branch. Since
B`ϑ depends on the slope of B`r, the maximum of B`ϑ occurs earlier than the maximum
of B`r. The difference increases with increasing duration T . Very different convolution
kernels γR

`
(t) and γT

`
(t) are required, such that after convolution both components – which

at r = a are derived from a scalar potential – agree in time and differ only by a space-
dependent factor (top panel). In particular the long tail of γT

`
(t) achieves that the negative

values of B`ϑ(c) are always outweighed by the positive values.- For T → 0 the maxima
of B`r and B`ϑ occur simultaneously: at the CMB at t ' 0 and at the surface at the max-
imum of γR

`
(t), i.e. at t = 76 d. With longer pulse duration increases the lead of the

tangential component w.r.t the radial component from ' 30 d for T = 200 d to ' 300 d
for T = 2000 d and ' 700 d for T = 20000 d.
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The Br-impulse at r = c creates a magnetic field at r = a, where both components attain
their maxima simultaneously. The time lag between these maxima and the maximum of
the Br impulse is the relevant delay time of the impulse. Fig. 4 shows that the maximum of
the tangential component at the CMB occurs prior to the maximum of the radial impulse,
which leads to a longer delay time for this component. These delay times τR

`<
and τT

`<

(with ` = 1) are given in Table 1. They are lower bounds of the low-frequency delay
times τR

`
and τT

`
introduced in Sect. 3.1. This low-frequency limit requires τR,T

`
� T .

T[d] τR
1<[d] τT

1<[d]

0 76 76
20 76 79
50 78 85

100 83 98
200 99 130
500 129 207

1000 148 307
2000 157 462
5000 161 699

10000 162 805
∞ 162 857

Table 1: Convergence of τR,T
1< to τR,T

1 with τR,T
1 read from Table 2. For T → 0 both maxima

occur at the mode of γR
1 (t).

3.3. Determination of the time constants for given σ(r)

In this section it is shown how the three mantle time constsnts τ`, σ` and %` can be
determined from a given σ(r). Via (3.27) and (3.24) the time constants are connected
with the k-th derivative of Γ`(ω) at ω = 0. Since the definitions (2.14) and (2.15) of
ΓR
`
(ω) and ΓT

`
(ω) involve field ratios only, we can select for f` a convenient normal-

ization. For ΓR
`

we choose f`(r, ω) =: f R
`

(r, ω) with f R
`

(c, ω) = 1, whereas for ΓT
`

we select f`(r, ω) =: f T
`

(r, ω) with d f T
`

(r, ω)/dr|r=c = −`/c. Taking into account that
f ′
`
(a) = −(`/a) f`(a), Eqs. (2.14) and (2.15) are transformed into

ΓR
` (ω) = (c/a)2 f R

` (a, ω), f R
` (c, ω) = 1, (3.36)

ΓT
` (ω) = (c/a)2 f T

` (a, ω), d f T
` (r, ω)/dr|r=c = −`/c. (3.37)

The potentials f R,T
`

(r, ω) satisfy as solutions of (2.10) the integral equation

f R,T
`

(r, ω) =
(c
r

)`

− iω

a
∫

c

σ(x) GR,T
`

(r|x) f R,T
`

(x, ω) dx, (3.38)
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Figure 4: Degree ` = 1, impulse duration T = 200 d: Diffusion of radial (red / thick)
and tangential (blue / thin) magnetic components from the CMB (r = c) to the
surface of the Earth (r = a). Used is the conductivity model of Fig. 1. See text
for details.
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where Green’s function GR,T
`

(r|r0) solves the differential equation

[

d2

dr2
− `(` + 1)

r2

]

GR,T
`

(r|r0) = −µ0 δ(r − r0), (3.39)

subject to the boundary conditions

G R
` (c|r0) = G R

` (r|c) = 0, dG T
` (r|r0)/dr|r=c = dG T

` (r|r0)/dr0|r0=c = 0. (3.40)

These conditions grant the satisfaction of the boundary conditions for f R,T
`

(r) at r = c, see
Eqs. (3.36) and (3.37). Therefore

G R,T
`

(r|r0) =

(

r<
r>

)`

·G R,T
`

(r<|r<) =:

(

r<
r>

)`

· g R,T
`

(r<), (3.41)

where r< := min(r, r0), r> := max(r, r0) and

g R
` (r) =

µ0 c
2` + 1

·
[

r
c
−

(c
r

)2`
]

, g T
` (r) =

µ0 c
2` + 1

·
[

r
c
+
` + 1
`

(c
r

)2`
]

. (3.42)

For brevity we omit from now on the superscripts R, T , but keep in mind that – due to the
different forms of g` in (3.42) – different expressions hold for the diffusion of the radial
and tangential magnetic component.

The potential f`(r, ω) is an analytical function of ω in the circle |ω| < λ`1, where iλ`1 is
the pole of Γ`(ω) with smallest modulus (see Sect. 3.4). Therefore, there exists in a small
neighbourhood of ω = 0 the power series

f`(r, ω) =
(c
a

)` ∞∑

k=0

(−iω)k

k!
ψ`k(r), (3.43)

with

ψ`k(r) :=
(a
c

)`

· dk f`(r, ω)
d(−iω)k

∣

∣

∣

∣

∣

∣

ω=0

. (3.44)

Recalling that Γ`(0) = (c/a)`+2, we deduce from (3.24), (3.36) and (3.37) that m`k =

ψ`k(a). Therefore (3.27) yields

τ` = ψ`1(a), σ2
` = ψ`2(a) − ψ2

`1(a), %3
` = ψ`3(a) − 3ψ`2(a)ψ`1(a) + 2ψ3

`1(a). (3.45)

By inserting (3.43) into the integral equation (3.38) and comparing the coefficients of
equal powers of −iω, we obtain the the recursion

ψ`,k+1(r) = (k + 1)

a
∫

c

σ(x) G`(r|x)ψ`k(x) dx, k = 0, 1, 2, . . . . (3.46)
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The recursion starts with ψ`0(r) = (a/r)`. The three subsequent terms are

ψ`1(r) =

a
∫

c

dxσ(x) G`(r|x) (a/x)`, (3.47)

ψ`2(r) = 2

a
∫

c

dxσ(x) G`(r|x)

a
∫

c

dyσ(y) G`(x|y) (a/y)`, (3.48)

ψ`3(r) = 6

a
∫

c

dxσ(x) G`(r|x)

a
∫

c

dyσ(y) G`(x|y)

a
∫

c

dzσ(z) G`(y|z) (a/z)`. (3.49)

The time constants τ`, σ` and %` are according to (3.45) expressible in terms of ψ`k(a),
k = 1, 2, 3. The evaluation, performed in Appendix A, yields

τ` =

a
∫

c

dxσ(x) G`(x|x), (3.50)

σ2
` =

a
∫

c

dxσ(x)

a
∫

c

dyσ(y) G2
`(x|y), (3.51)

%3
` = 2

a
∫

c

dxσ(x)

a
∫

c

dyσ(y)

a
∫

c

dzσ(z) G`(x|y) G`(y|z) G`(z|x). (3.52)

In terms of the partial Green’s functions g`(r) defined in (3.42) a possible representation
is

τ` =

a
∫

c

dxσ(x) g`(x), (3.53)

σ2
` = 2

a
∫

c

dxσ(x) g2
`(x)

a
∫

x

dyσ(y) (x/y)2`, (3.54)

%3
` = 12

a
∫

c

dxσ(x) g2
`(x)

a
∫

x

dyσ(y) g`(y)

a
∫

y

dzσ(z) (x/z)2`. (3.55)

Numerical values of the time constants derived from the model Fig. 1 are given in Table 2.
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` τR
`

[d] σR
`

[d] %R
`

[d] τT
`

[d] σT
`

[d] %T
`

[d]

1 162.1 114.7 141.6 857.1 771.5 969.7
2 129.9 85.3 104.1 395.8 320.1 399.6
3 107.5 65.6 79.0 250.4 183.3 226.3
4 91.3 52.0 61.7 181.1 121.3 147.8
5 79.2 42.2 49.4 141.2 87.4 104.9
6 69.8 35.1 40.4 115.4 66.6 78.8
7 62.3 29.7 33.7 97.5 52.9 61.7
8 56.4 25.5 28.5 84.3 43.2 49.8
9 51.4 22.2 24.5 74.2 36.2 41.2

10 47.2 19.5 21.3 66.2 30.8 34.7
11 43.7 17.3 18.7 59.8 26.7 29.7
12 40.6 15.6 16.5 54.4 23.4 25.8
13 38.0 14.1 14.8 50.0 20.7 22.6
14 35.6 12.8 13.3 46.2 18.5 20.1
15 33.6 11.7 12.0 42.9 16.7 17.9

Table 2: Radial and tangential ellectromagnetic time constants for the conductivity model
of Fig. 1

.

Since gR
`
< gT

`
, we always have τR

`
< τT

`
, σR

`
< σT

`
and %R

`
< %T

`
. The striking difference

in the weight functions gR
`

and gT
`

is their behaviour close to the CMB. Here, a well-
conducting layer will significantly affect the diffusion of tangential components (i.e. τT

`
),

whereas it has negligible influence on the diffusion of Br (i.e. τR
`
). The physical reason for

this finding is that image currents induced in the close highly conducting core strongly
damp the radial magnetic component, whereas the core enhances the induced tangen-
tial magnetic components between the layer and the CMB (but weakens them above the
layer).

Discussion
Table 2 shows that for a reasonable conductivity distribution in the mantle, the time con-
stants for the radial magnetic component do not exceed half a year. A significant impact
of mantle conductivity on the diffusion of the SV only exists, if the SV has strong con-
tributions with a time scale comparable with the time constants. If for a degree ` the SV
does not change much over the width (corresponding to the smoothing time σ`) of the
convolution kernel γ(t) used in (3.20) and displayed in Fig. 2, one would observe at r = a
only a replica of the the SV at r = c, reduced by the factor (c/a)`+2 and – at most – time-
shifted by the small delay time τ`. Inversely, the observed SV continued to the CMB will
have an amplitude increased by the factor (a/c)`+2 and advanced by τ`.

104

21. Kolloquium Elektromagnetische Tiefenforschung, Haus Wohldenberg, Holle, 3.-7.10.2005, Hrsg.: O. Ritter und H. Brasse



3.4. Relationship between τ`, σ`, %` and the free-decay times

The poles of ΓR,T
`

(ω) are those imaginary frequencies ω` j = iλ` j, λ` j > 0, j = 1, 2, 3, . . . ,
for which (2.10) has eigensolutions with the boundary conditions

f R,T
`

(r, ω)→ 0 for r → ∞ and f R
` (c, ω) = d f T

` (r, ω)/dr|r=c = 0. (3.56)

For the conductivity model of Fig. 1 the corresponding times T` j := 1/λ` j are given in
Table 3.

T R
` j [d] T T

` j [d]

j ` = 1 ` = 2 ` = 3 ` = 4 ` = 1 ` = 2 ` = 3 ` = 4

1 112.09 82.17 62.13 48.24 769.68 316.92 179.14 116.54
2 21.97 20.20 18.42 16.70 49.87 42.38 35.93 30.51
3 8.68 8.38 8.04 7.69 14.28 13.50 12.68 11.83
4 4.64 4.55 4.44 4.32 6.41 6.23 6.04 5.83
5 2.71 2.67 2.63 2.59 3.73 3.67 3.61 3.53
6 1.94 1.92 1.90 1.87 2.32 2.28 2.25 2.21
7 1.42 1.41 1.40 1.39 1.64 1.63 1.61 1.59
8 1.06 1.06 1.05 1.04 1.18 1.18 1.17 1.16
9 0.82 0.81 0.81 0.80 0.92 0.91 0.91 0.90

10 0.67 0.66 0.66 0.66 0.72 0.71 0.71 0.71

Table 3: The first poles ω` j = i/T` j of ΓR
`

(at left) and ΓT
`

(at right) for the conductivity
model Fig. 1. The times T R

` j are also the decay times of freely decaying current
sytems in the mantle.

The computation of free-decay modes of mantle currents requires the determination of
the eigensolutions of (2.10) with the boundary conditions

f`(r, ω)→ 0 for r → ∞ and f`(c, ω) = 0. (3.57)

These conditions agree with those applied to f R
`

(r, ω). Therefore the times T R
` j are also

the free-decay times.

For radial quantum numbers j � 1 and a smooth conductivity variation σ(r), the eigen-
values follow simple asymptotic rules. Let

T0 :=





















a
∫

c

√

µ0σ(r) dr





















2

.
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Then for j � 1 (cf. Morse & Feshbach 1953, p. 739)

T R
` j '

T0

( j − 1
2 )2π2

, T T
` j '

T0

( j − 1)2π2
.

In this first order approximation the quantum number ` plays no role.

Simple relationships exist between τ`, σ`, %` and the pole positions iλ` j = i/T` j,

τ` =

∞
∑

j=1

T` j, σ2
` =

∞
∑

j=1

T 2
` j, %3

` = 2
∞

∑

j=1

T 3
` j (3.58)

We shall sketch the proof of (3.58): Let

ϕ` j(r) := f`(r, iλ` j)

be the eigenfunctions defined by (3.56). They satisfy the orthonormalization

a
∫

c

σ(r)ϕ` j(r)ϕ`k(r) dr = δ jk, (3.59)

where δ jk is the Kronecker symbol, and the integral equation [= homogeneous version of
(3.38) ]

ϕ` j(r) = λ` j

a
∫

c

σ(x) G`(r|x)ϕ` j(x) dx (3.60)

with Green’s function G`(r|x) given in (3.41) and (3.42). Now G`(r|x) is expanded w.r.t.
to the variable x in terms of the eigenfunctions ϕ` j(x),

G`(r|x) =
∞
∑

j=1

c j(r)ϕ` j(x). (3.61)

Using (3.59) and (3.60), we obtain as expansion coefficients

c j(r) =

a
∫

c

σ(x) G`(r|x)ϕ` j(x) dx =
ϕ` j(r)

λ` j
(3.62)

and therefore the bilinear expansion of the kernel is

G`(r|x) =
∞

∑

j=1

ϕ` j(r)ϕ` j(x)

λ` j
. (3.63)
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Mercer’s theorem (Courant & Hilbert 1968, p. 117) guarantees that this expansion exists
and converges absolutely and uniformly. Let the iterated Green’s functions G(n)

`
(r|x) be

defined by

G(1)
`

(r|x) := G`(r|x), G(n+1)
`

(r|x) :=

a
∫

c

duσ(u) G`(r|u) G(n)
`

(u|x), n ≥ 1. (3.64)

Then insertion of (3.63) into (3.64) yields on using the orthogonality (3.59), cf. Courant
& Hilbert 1968, p. 117,

G(n)
`

(r|x) =
∞

∑

j=1

ϕ` j(r)ϕ` j(x)

λn
` j

. (3.65)

The integral representations (3.50) to (3.52) admit the formulation

τ` =

a
∫

c

σ(x) G(1)
`

(x|x) dx, σ2
` =

a
∫

c

σ(x) G(2)
`

(x|x) dx, %3
` = 2

a
∫

c

σ(x) G(3)
`

(x|x) dx.

(3.66)
Therefore the insertion of (3.65) into (3.66) leads on using (3.59) to (3.58).

From (3.58) follows

τ2
` − σ2

` =

∞
∑

j,k=1
j,k

T` jT`k ≥ 0.

Hence,
T`1 ≤ σ` ≤ τ` (3.67)

Equality only holds for a single thin shell of conductance Σ at r = b, c ≤ b ≤ a, where
only one pole exists and therefore all three times compared in (3.67) agree. From (3.50)
to (3.52) follows with σ(r) = δ(r − b) · Σ and G`(b|b) = g`(b)

T`1 = τ` = σ` = g`(b) · Σ

and %` =
3√
2 g`(b) · Σ. The corresponding convolution function is simply

γ`(t) = Γ`(0) exp(−t/τ`)/τ`,

i.e. the Gamma distribution (3.34) with α` = 1 and β` = 1/τ`.
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A. Evaluation of the integrals defining the time
constants

The time constants τ`, σ` and %` are given by (3.45) and (3.46). In the sequel repeated use
is made of the definition (3.41) of Green’s function and its symmetry G`(x|y) = G`(y|x).

a) Delay time τ`:

τ` = ψ`1(a) =

a
∫

c

dxσ(x) G`(a|x) (a/x)` =

a
∫

c

dxσ(x) G`(x|x) =

a
∫

c

dxσ(x) g`(x),

which agrees with (3.50) and (3.53).

b) Smoothing time σ`:
Let

∫

dV2 f (x, y) :=

a
∫

c

dxσ(x)

a
∫

c

dyσ(y) f (x, y).
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Moreover letΘ(x) withΘ(x)+Θ(−x) = 1 be Heaviside’s step function. Then (3.45) yields

σ2
` = ψ`2(a) − τ2

` = I1 + I2

with

I1 := 2
∫

dV2 G`(a|x) G`(x|y) (a/y)` Θ(x − y) − τ2
`

=

∫

dV2 G`(x|x) G`(y|y) [ 2Θ(x − y) − 1 ]

=

∫

dV2 G`(x|x) G`(y|y) [Θ(x − y) + Θ(y − x) − 1 ] = 0,

I2 := 2
∫

dV2 G`(a|x) G`(x|y) (a/y)` Θ(y − x) = 2
∫

dV2 G2
`(x|y)Θ(y − x)

=

∫

dV2 G2
`(x|y) [Θ(y − x) + Θ(x − y) ] =

∫

dV2 G2
` (x|y).

Therefore

σ2
` = I2 =

∫

dV2 G2
`(x|y),

which agrees with (3.51), whereas (3.54) follows from the second part of the fourth line.
In the third and fifth line the previous factors 2 are replaced by unity because an identical
term is added by interchanging the dummy integration variables x and y and exploiting
the symmetry in x and y of the remaining integrand.

c) Skewing time %`:
Let

∫

dV3 f (x, y, z) :=

a
∫

c

dxσ(x)

a
∫

c

dyσ(y)

a
∫

c

dzσ(z) f (x, y, z).

Then (3.45) and (3.47) to (3.49) yield

%3
` = ψ`3(a) − 3τ`[ψ`2(a) − τ2

` ] − τ3
` = ψ`3(a) − 3τ`σ

2
` − τ3

` = I11 + I12 + I21 + I22

with

I11 := 6
∫

dV3 G`(a|x) G`(x|y) G`(y|z) (a/z)`Θ(x − y)Θ(y − z) − τ3
` ,

I12 := 6
∫

dV3 G`(a|x) G`(x|y) G`(y|z) (a/z)`Θ(x − y)Θ(z − y) − 3τ`σ
2
` ,

I21 := 6
∫

dV3 G`(a|x) G`(x|y) G`(y|z) (a/z)`Θ(y − x)Θ(y − z),

I22 := 6
∫

dV3 G`(a|x) G`(x|y) G`(y|z) (a/z)`Θ(y − x)Θ(z − y).
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These integrals admit considerable simplifications:

I11 =

∫

dV3 G`(x|x) G`(y|y) G`(z|z) [ 6Θ(x − y)Θ(y − z) − 1 ]

=

∫

dV3 G`(x|x) G`(y|y) G`(z|z) [ 1 − 1 ] = 0,

I12 = 6
∫

dV3 G`(x|x) G2
` (y|z) [Θ(x − y)Θ(z − y) − Θ(z − y) ]

= −6
∫

dV3 G`(x|x) G2
` (y|z)Θ(y − x)Θ(z − y),

I21 = 6
∫

dV3 G2
`(x|y) G`(z|z)Θ(y − x)Θ(y − z)

= 6
∫

dV3 G`(x|x) G2
` (y|z)Θ(z − y)Θ(z − x),

I22 = 6
∫

dV3 G`(x|y) G`(y|z) G`(z|x)Θ(y − x)Θ(z − y)

=

∫

dV3 G`(x|y) G`(y|z) G`(z|x).

In I11 and I22 Green’s functions (and dV3) are invariant under a permutation of (x, y, z).
This allows us to replace a given ordering of x, y, z, spanning only a pyramid of volume
(a − c)3/6, by all six permutations spanning the whole cube (a − c)3. – In I12 we have
inserted σ2

`
in its form (3.54) [ with (x, y) replaced by (y, z) ]. Similarly in I21 the tripel

(x, y, z) was replaced by (y, z, x) to allow a combination with I12,

I21 + I12 = 6
∫

dV3 G`(x|x) G2
` (y|z)Θ(z − y) [Θ(z − x) − Θ(y − x) ]

= 6
∫

dV3 G`(x|x) G2
` (y|z)Θ(z − x)Θ(x − y)

= 6
∫

dV3 G`(x|y) G`(y|z) G`(z|x)Θ(z − x)Θ(x − y)

=

∫

dV3 G`(x|y) G`(y|z) G`(z|x) = I22.

Therefore

%3
` = I11 + I12 + I21 + I22 = 2I22 = 2

∫

dV3 G`(x|y) G`(y|z) G`(z|x),

which agrees with (3.52). Finally (3.55) follows from the first form of I22 given above.
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