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  1  Preliminaries 
 
There seem to be good reasons to return from time to time to 1-dimensional interpretations of 
electromagnetic (EM) sounding data. Not long ago Whittall & Oldenburg (1992) published an 
extensive treatise on the subject and Parker & Booker (1996) presented an extension of their 
earlier work to treat the 1D non-linear inversion without recourse to linearization. It is also 
interesting to note that still sites are singled out in the most complicated and multi-
dimensional situations, where an interpretation by 1D models can be justified (e.g. Lathi et al., 
2005; Section 4). It may not be very difficult anymore to find models which match EM 
sounding data within error limits, provided they are sufficiently consistent with this kind of 
interpretation. There will be, however, a multitude of competing models to account for a 
limited number of error-bearing estimates. Therefore the fit of modelled to observed 
responses should be only one of several criteria when interpreting EM sounding data. Other 
aspects are the structural complexity of the derived model, the achieved resolution at a given 
target depth and the accuracy of the model at that depth. 
 
These four aspects will be the key elements of the following discourse. It is centred on the 
Psi-algorithm, of which Larsen (1975, Section 5.1) gave a concise outline, and a short 
overview can be found in Appendix A. Further references are Schmucker (1974), Schmucker 
& Weidelt (1975, Section 6.4) and Haak (1978, Section 3.12), here in connection with related 
work by Eckhardt (1968). Subsequent improvements have been summarized by Schmucker 
(2001). They are extended now and complemented. 
 
 
  2  The linearization of the 1D inverse problem 
 
We seek to formulate a well-posed inverse problem in the sense that its solution depends 
continuously on the data. Otherwise small changes of the data, by errors for example, could 

yield quite disparate solutions. For instance, when  denotes the depth-

integrated conductivity, with z as depth and 

∫=
z

zdzz
0
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ρ  as resistivity, then the derivation of )(zτ  from 
EM responses represents a well-posed problem, and the same presumably applies when 
deriving )'(zρ  in a conductivity-weighted depth  
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(Weidelt, 1972; eq.4.2), while the derivation of )(zρ  in true depth would be ill-posed 
(Berdichevsky & Dmitriev, 2002; Sections 8.1 and 8.3). The transition from z to 'z  implies 
that depth sections of high resistivity, in comparison to 0ρ , are compressed and those of low 
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resitivity enlarged, smoothing out the downward attenuation of the incident field. The scaling 
constant 0ρ  can be freely chosen, but should lie preferably in the range of expected 
resistivities as inferred for instance from the range of apparent resistivities (cf. Appendix B).  
 
When a continuous model )'(zρ  in z′ -depth is approximated by a sequence of layers of 
resistivity mρ  (m=1,2,..,M-1) above a uniform half-space of resistivity Mρ , we shall 
subdivide it into layers of constant thickness . Eq. (1) implies then that the model 'd )(zρ  in 
true depth has the layer thicknesses 
 

0/' ρρmm dd = ,                                                                                                                      (2) 
 
a constraint which has been uses repeatedly in the past in this context. It implies that only the 
layer resistivities remain as the M unknowns to be found, provided the layer thickness  is 
not among them, as it will be the case in our approach. The optimal choice of  will be 
considered separately in Subsection 4.4. 

'd
'd

 
Under certain circumstances, when for example the responses to be interpreted extend over a 
wide range in frequency and thereby over a large range of penetration depths, it may be useful 
to follow Larsen (1975) and to vary layer thicknesses also in 'z  by adopting layer weights  
relaxing the above constraint to 

nw

 
0/' ρρmnm dwd ⋅= .                                                                                                               (3) 

 
In this way the model can be more finely subdivided at shallow depths than further down, for 
example, concentrating then on the interpretation of high frequencies, or vice versa. The 
weights are either arbitrarily chosen or determined separately in an iterative process, which 
starts with preliminary layer resistivities derived for unit weights. Then by solving a linear 
system similar to that in the forthcoming eq. (4), successive improvements are obtained 
simultaneously for as well as nw mρ .   
 
The data to be interpreted are complex-valued transfer functions for angular frequency nω , 
with . Henceforth we denote them with , the layer parameter for resistivity to 
be found with , with  and the connecting non-linear functional for the n-th 
frequency with . Constraining layer thicknesses according to eq. (2), the functional 
depends in addition to the layer parameter only on the layer thickness  multiplied with the 
frequency factor 

Nn ,..,2,1= ny

mx Mm ,..,2,1=

nF
d ′

nα  as introduced in the forthcoming eq. (6), yielding 
in  the model response for frequency );,...,,( 21

mod dxxxFy nMnn ′= α nω . Unless the non-linear 
1D problem is truly to be solved by inversion, an iterative procedure can be used by 
linearization of the problem. A standard, but here not followed form of linearization proceeds 
from a Taylor expansion of the functional, truncated after first-order terms: 

m
m m

n
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x
FdxFy ∆
∂
∂

+= ∑)';( )0( α  with the derivatives taken at  and with  as 

starting model. The resulting linear problem    

)0(
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with (..)δ  as misfit residual, is solved towards improvements . They are added to the 
starting model to yield  for the next iteration and new derivatives of  at  . The 
iterations may or may not converge towards a final model, not counting the possibility that it 
may be influenced by the choice of the starting model. But the principal drawback for our 
purposes is that modelling errors are difficult to obtain, and thus they are rarely quoted in the 
literature for models which have been derived in this manner. 

)0(
mx∆

)1(
mx nF )1(

mm xx =

 
The use of the Psi-algorithm resolves partially the convergence problem and removes the 
other two shortcomings altogether. Data and model are defined now in such a way that the 
functional receives the quasi-linear form 
 

m
m

nmn xgy ∑=mod ,                                                                                                                      (5) 

 
with  as data kernel (cf. eq. A4), which depends primarily on the preset product 'nmg dnα , to a 
lesser degree also on the model parameter , thus preserving the non-linearity of the inverse 
problem. But the dependence on layer resistivity is weak unless the model is very rugged. 
When for example resistivity changes between adjacent layers over two orders of magnitude, 
with 

mx

10/1.0 1 ≤≤ + mm ρρ , the data kernel does not change by more than about 10%. 
Furthermore, no starting model is involved because iterations can start with the totally model-
independent approximation 
 

)2exp()sinh(2)0(
mnnnm zdg ′−′= αα   with   00 / ρµωα nn i=                                                       (6)   

 
and  as depth of the centre of the m-th layer in dmzm ′−=′ )2/1( z′  (cf. eq. A5). Solving then 
the linear problem 
 

n
m

mnmn yxgy δ+= ∑ )1()0(  ,                                                                                                              (7) 

 
it yields in  for )1(

mx Mm ,..,2,1=  a first model approximation. The calculations are repeated 
with the exact data kernel   for this model, leading to a second approximation , and so 
on until the differences of misfit residuals 

)1(
nmg )2(

mx

nyδ  in consecutive iterations fall below a pre-set 
threshold. In this way each iterative cycle generates a completely new model, while updating 
the data kernel concurrently from cycle to cycle. Thus model errors as they arise from data 
errors are readily derived for the final model. The remaining problem of convergence will be 
addressed in Subsection 4.5. After the first iteration it is also possible to change to spherical 
models and to derive the first set of exact data kernels accordingly.   
 
Depending on whether 1D sounding experiments are conducted with geomagnetic time 
variations alone or in combination with those of the geoelectric field, the pertinent EM 
responses for angular frequency nω  are the C-response )( nC ω  or the magneto-telluric 
impedance )( nZ ω , with )()( nn CiZ ωωω = . Converted into apparent resistivities and phases 
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of impedance we obtain  and 2
0 |)(|/)( nnna Z ωωµωρ ⋅= 2

0 |)(| nn C ωωµ ⋅= )}(arg{)( nn Z ωωϕ =   
2/)}(arg{ πω += nC . As shown in Appendix A, the following definition of data and model 

leads to the desired quasi-linear form of the functional: 
 

)}](/)([ln{2 00 ωω CCy nn ⋅= }/)(ln{ 0ρωρ na= }4/)({2 πωϕ −+ ni                                           (8) 
 
with nnC αω /1)(0 =  as C-response of a uniform half-space of resistivity 0ρ , while the natural 
logarithm of resistivity in the form 
 

}/ln{ 0ρρmmx =                                                                                                                        (9) 
 
defines the model parameter. Eq. (8) is identical with Parker & Booker’s eqs 4 and 5 (1996), 
even though here in a very different context. Estimation errors )( nC ω∆  for |(| nC ω  yield data 
error |)(|/)(2 nnn CCy ωω∆=∆ . Equating in the usual way aa ρρ /∆  with the phase error, ny∆  
is also the error of the real and imaginary parts of . ny
 
Renamed , also an alternative model parameter will be used in order to express the change 
of resistivity from layer to layer,  

mu

 
)/(ln 1−= mmmu ρρ 1−−= mm xx                                                                                                 (10)  

 
with  and  00 =x
 

m
m

nmn ugy ∑= ˆmod                                                                                                                      (11) 

as functional. The model-independent approximation of the new data kernel  to start 
iterations is 

nmĝ

 
)}2/(2exp{ˆ )0( dzg mnnm ′−′−= α                                                                                              (12)  

 
(cf. eq. A7 and A8). 
 
 
  3  The pseudo-inverse of the data kernel 
 
We continue in vector and matrix notations. presuming that their components and elements 
are real-valued. Since complex data and thereby complex data kernels have been used so far, 
the first  positions of the data vector N y  are filled with the real part and the following  
positions with the imaginary part of the data, proceeding in the same way when filling the 2N 
rows of the  data kernel matrix 

N

MN ×2 G )( nmg= . Without change of notations  
represents henceforth for  the real part of the data, as defined in eq. (8), and for  
the imaginary part, and the same shall apply to the data kernel. 

ny
Nn ≤ Nn >

 
Under certain circumstances it can be of advantage to interpret only apparent resistivities or 
only phases. Omitting then the first or the second N entries, the data vector is reduced to N 
components and the data kernel matrix to N rows. Otherwise the interpretation is performed in 
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exactly the same way. When only phases are interpreted, the scaling resistivity 0ρ  can be 
used to match modelled and observed apparent resistivity for some selected frequency, thus 
giving the model absolute scales in resistivity and depth. 
 
Let now T

Mxxxx ),..,,( 21=  denote the model vector. Then without reference to the respective 
iteration, eq. (7) reduces with yδ  for the real and imaginary part of the misfit residual to 
 

yxGy δ+⋅= .                                                                                                                         (13)  
 
A direct inversion of G  in the case of MN =2  will not be considered any further because the 
solution yGx ⋅= −1  leaves no room for misfit residuals and is thereby unrealistic for error-
bearing data. Instead a pseudo-inverse H  of G  will be used with dimensions NM 2× . 
Applied to the data vector y  the solution of eq. (13) becomes  
 

yHx ⋅= .                                                                                                                               (14) 

 
The k-th components of thus obtained model vector xv  represents in  
 

m

M

m
kmk xax ∑

=

=
1

w                                                                                                                          (15) 

 
a certain average over layers which are adjacent to the target layer km = , with . 
The coefficients  are elements of a so-called 

Mk ,..,2,1=

kma MM ×  resolution matrix A . Combining eq. 
(14) with eq. (15) in vector notations yields xAyH ⋅=⋅ , and with xGy =  we obtain 

GHA ⋅=  and thus  
 

∑
=

=
N

n
nmknkm gha

2

1

                                                                                                                      (16) 

 
to express the resolution coefficients in terms of solution coefficients and data kernel. A 
similarly derived NN 22 ×  information density matrix B HG ⋅=  connects in modyBy ⋅=  the 
empirical and model responses. Both matrices can be thought to apply certain filter operations 
on model and data, as outlined in Appendix B. 
 
When data of very unequal quality are involved and none of them is to be totally rejected, 
weights  can reduce the influence of bad data with large errors nys ∆/0 ny∆ , i.e.  is replaced 
by  and the data kernel  by 

ny
=′ny nys ∆/0 ny⋅ nmg =′nmg nys ∆/0 nmg⋅ , for consistency, with a 

corresponding change of solution coefficients to knh′ . All weighted data have now the same 
error , where  is a common choice. We shall use the harmonic mean of the errors 
instead. Then with unity as mean weight, bad data receive weights below unity and good data 
those above unity, while preserving in  an indicator for the errors of the original data. A 
further reason for using the harmonic mean will become transparent in Subsection 5.2.  

0s 10 =s

0s
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Eq.  (14) implies that the k-th component of the resolvable model vector is  
 

            or           ,                                                                         (17) n
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depending on whether original or weighted data are interpreted. It follows readily that the 
quadratic error or variance of kxv  due to data errors is 
 

222
n

n
knk yhx ∆=∆ ∑v        or          ∑ ′=∆

n
knk hsx 22

0
2v ,                                                                        (18) 

 
provided that the individual errors nnn yyy −=∆ ll  of the analysed time sections  
are independent in the sense that the sums of products 

L,..,2,1=l

ll nn yy ˆ∆⋅∆  over all sections are zero for 
.  nn ˆ≠

 
For completeness we summarize the singular value decomposition of the data kernel matrix, 
which leads to the definition of its pseudo-inverse (cf. for example Kress, 1991; Section 5). 
Let  be the maximum number of rows and columns of a non-singular 
quadratic matrix, which can be fitted into the rectangular matrix 

)2,min( NMp ≤
G , if necessary with a prior 

re-arrangement of rows and columns to maximize p. Let jµ  with pj ,..,2,1=  denote the p 

positive eigenvalues of the eigenvalue problems jjj
T vvGG µ=  and jjj

T uuGG µ= , ordered 
according to size, and let the  matrix pM × V  and the pN ×2  matrix U  be the modal 
matrices of eigenvectors jv  and ju , respectively. Then the singular value decomposition of 

the data kernel is TVUG Λ= , yielding in TUVH 1−Λ=  its pseudo-inverse, where Λ   is a 

diagonal pp×  matrix containing the so-called singular values jj µλ +=  as elements.  
 
The thus obtained pseudo-inverse does not provide, however, a realistic solution in our 
context because eigenvalues up to )2,min( NMj =  are never exactly zero, even though they 
might be very small. Assuming then )2,min( NMp = , we obtain least squares or minimum-
norm solutions of purely over-determined or under-determined linear systems. They are 
Gauss’ least squares solution 
 

TT GGGH 1)( −=                                                                                                                     (19) 
 
for , which minimizes NMp 2<= yy Tδδ  for the best possible fit between empirical and 
modelled responses, and the minimum-norm solution 
 

1)( −= TT GGGH                                                                                                                    (20) 
 
for , which minimizes MNp <= 2 xx T vv   giving the least rugged model. The first pseudo-
inverse yields a perfectly resolved model with MIA = , the second provides a model which 
perfectly explains the data with NIB 2= . But as a rule, the normal equation matrix GG T  or 

TGG  is ill-conditioned for inversion. The resulting models are thus very sensitive against 
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data errors and the often extreme changes of resistivity from layer create convergence 
problems for the iterative process. 
 
The thereby expressed adverse effect of small eigenvalues can be avoided by adding a 
damping factor jγ  to the reciprocals of jλ . The choice of Tikhonov’s  , with )/( 22

jjj λαλγ +=

0>α , and thereby the replacement of 1−Λ  by ΛΛ+ −
×

12 )( ppIα  in the singular value 

decomposition of H , eliminates the need for decomposition altogether, leading to the thus 
defined regularized least squares and minimum-norm solutions 
 

T
M

T GIGGH 1)( −+= α                                                                                                      (21) 
 
and  
 

1)( −+= N
TT IGGGH α .                                                                                                     (22) 

 
They neither minimize the model misfit nor the model norm anymore. Furthermore, none of 
the matrices A  or B  remains unitary and the resulting model is less resolved than without 
regularisation. But model oscillations are suppressed and model errors reduced. The identity 
 

)()( N
TTT

M
T IGGGGIGG αα +⋅=⋅+ ,                                             

 
when multiplied with 1...)( −+TGG  from the right and then with 1...)( −+GG T  from the left 
shows that for 0>α  the solution matrices H  in eqs (21) and (22) are identical. They are 
presented here separately only to illuminate their connection to the pseudo-inverses without 
regularisation. The regularisation parameter α  could be chosen, for example in the way that 
the iterations converge toward a model structure which appears as significant in terms of 
errors. We shall use a different approach, however, and shall use α  to constrain either the 
model norm or the misfit residual norm. 
   
 
  4   The preparation and conduct of 1D model interpretations 
 
 4.1 Consistency test 
 
Before entering into details about the actual procedures of model construction, a number of 
points have to be considered. First of all the data set may be at least partially inconsistent with 
the intended interpretation, i. e. no layered model exists which could reproduce it completely. 
If the causes are large random errors, still a smoothed-out model can be derived by 
regularization. But in the case of well determined estimates, regularisation is no substitute for 
the then possibly required interpretation with multi-dimensional models. Weidelt’s 
inequalities (1972, eqs 2.30-2.34) provide straightforward tests for consistency. The 
constraints for phases, in 2/)(0 πωϕ ≤≤ n , and for the slope of apparent resistivity curves, in 

1|)(ln/)(ln| ≤na Tdd ρ  with period nnT ωπ /2= , are rather weak and rarely violated. More 
stringent is the condition for the real part of the C-response )}(Re{)(* nn Cz ωω =  as indicator 
for the depth of penetration. In  this condition implies that penetration depths 
may not decrease, when periods increase. Violations are readily detected, for example, in the 

0/* ≥nTddz
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form of loops in ** z−ρ  presentations of the data. Other not so easily detectable violations 
concern condition for the first and second derivatives of the complex-valued C-response. 
Guidelines for their implementations can be found in Weidelt (1986). 
 
 
 4.2 Static shifts of magneto-telluric apparent resistivities  
 
Otherwise well determined magneto-telluric data are distorted frequently by near-surface 
anomalies. But they may remain consistent with 1D models, separately for the two 
polarisation of the magnetic field, provided that the distortion is quasi-static and the 
surrounding regional structure 1-dimensional. The second condition can be tested with a 
dimensionality study of the impedance tensor. It may show that at least a limited period range 
exists, within which 1D modelling towards the regional structure is justified (e.g. Bibby et al. 
,2005; Fig.6). There is no need to remove the distortion prior to the interpretation. Quasi-static 
distortion means that within the allowed period range apparent resistivities for the off-
diagonal elements of the impedance tensor are multiplied with unknown shift-factors g with 
respect to their undistorted values, with different factors for the two polarisations. In our data 
definition according to eq. (8) static shift merely implies that  is added to the real parts 
of , which is equivalent to changing the scaling resistivity 

)(ln g

ny 0ρ  to a different value 
g/00 ρρ =′ . As shown in Appendix B this has no effect upon the modelling results, provided 

 is changed to d ′ 00 / ρρ ′⋅′=′′ dd .  Hence, an interpretation of apparent resistivities for the 
two polarisations as they are, alone or together with phases, yields two separate, but 
presumably similar models for the regional structure, even though without absolute scaling for 
depth and resistivity. When the shift factors were somehow known, then multiplying depths 
with g/1  and subtracting  from )(ln g )/(ln 0ρρm  would provide also absolute scaling. 
 
 
 4.3 The choice of the regularisation parameter 
 
Except for rare cases 1D interpretations require regularisation, and the problem arises which 
regularisation parameter α  to chose. When a singular value decomposition of the data kernel 
matrix has been performed and thus the range of eigenvalues is known, α  can be chosen in 
order to dampen effectively the influence of small eigenvalues. Otherwise the choice is quite 
arbitrarily and, for example, α could be given a large enough value that the iterative process 
for finding a model converges. Here we shall adopt, however, a different target-oriented 
approach by constraining either the model norm or the misfit norm. Thus either 2|| xv  or 2|| yδ  
should match a pre-set constraining constant c.  The interpretations are started then with an 
arbitrarily chosen value 0α . Using Newton’s method the interpretation is repeated with 

, where s denotes one of the squared norms. Appendix C shows 
how to calculate the differential quotient 

1
01 )/()( −∂∂⋅−−= ααα scs

α∂∂ /s .  Interpretations are carried out with the thus 
updated value 1α , and they are repeated until the target cs =  is reached. 
 
 
 4.4 The choice of the layer thickness d’  
 
For a successful 1D interpretation it is essential to subdivide the model )(z′ρ  in an optimal 
manner into layers of constant thickness , particularly when sparsely subdivided models 'd
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with few layers are considered. Ideally the penetration depths )Re(* Cz =  of the responses 
should fit evenly into the range from 0=′z  to dMz ′⋅=′ . But the transfer of *z  into z′ - 
depths would involve the not yet known resistivities. Therefore the following pragmatic 
procedure has been adopted: For given values of M  and α , a starting value for  is chosen 
which is definitely too small. Thus, the iterative process will derail after a few iterations 
because changing model parameter of excessive size violate the assumption of only weakly 
model-dependent data kernels. The calculations are repeated with a gradually increased  
until iterations start to converge and continued until divergence sets in again. Within the range 
of convergence 

'd

'd

2|| yδ  will have a more or less well developed minimum, and the value of , 
where this minimum occurs, will be regarded as optimal. The whole procedure is repeated 
with changing regularisation parameter, when pursuing the above stated target. The remaining 
problem how to find the right number of layers is postponed until Subsection 4.6. 

'd

 
 4.5 The divergence problem 
 
Divergence of the iterative process occurs when interpreting inconsistent or poorly 
determined response estimates, also for an improperly chosen layer thickness . In either 
case model parameter of excessive and rapidly changing size overstrain the basic concept of 
the chosen form of linearization that data kernels should not change much from one iteration 
to the next. Hence, iterations should be stopped, when  in any layer exceeds a certain 
limit. With 6.9 as limit, for example, 

'd

|| mx

0/ ρρm  may vary over six orders of magnitude. In 
principle divergence could be overcome by limitless regularisation. But the result would be 
flattened out models of little meaning. 
 
 
 4.6 The derivation of sparsely subdivided models 
 
We are ready now to turn to the actual conduct of 1D interpretations, for which two principal 
options exist. When the fit of model responses to empirical responses has first priority, then 
with  the pseudo-inverse of eq. (21) for an over-determined linear system represents 
the right choice because it minimizes in 

NM 2<
2|| yδ the model misfit norm. Mostly no regularisation 

or only a modest regularisation is required to ensure convergence. As a consequence sparsely 
subdivided models are always well resolved. In cases where regularisation is needed, the 
regularisation parameter α  is used to control the model norm with the condition 2|| x c= . 
Since this norm is determined mainly by the largest positive or negative model parameter, a 
choice of, say,  allows 29.6=c 0/ ρρm  to vary over roughly three orders of magnitude. 
 
In view of the limited number layers the optimal choice for the layer thickness  is critical 
and the constraint placed on layer thicknesses should be relaxed as described in the context of 
eq. (2). For deciding on the right value of 

d ′

M , misfit residuals are derived for an increasing 
number of layers, using each time the optimal choice for d ′ . Starting with very few layers, 
the residuals will gradually become smaller as the number of layers grows and as soon as this 
decline levels off the optimal number of layers is reached. Near this limit also more than one 
minimum of || yδ  can appear, indicating the existence of equivalent models with the best 
resolution either at shallow or at great depth. Models with a limited number of layers may or 
may not resemble reality. They can be appropriate in the case of geological strata with 
different resistivities and sharp boundaries, or for an Earth’s mantel, in which resistivity is 
controlled by phase transitions rather than by a gradually changing temperature.  
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 4.7 The derivation of finely subdivided models 
When smoothness of a quasi-continuous model has the first priority, the minimum-norm 
solution of an under-determined linear system with MN <2  will be appropriate according to 
eq. (22). It is then preferable to use as model parameter not the logarithmic resistivity itself, 
but its logarithmic change from layer to layer. Thus we change from model parameter  to 
model parameter  of eq. (10) with a concurrent change of the data kernel from  to .  
Once the new model parameter and their errors have been found, models in terms of 
logarithmic resistivities and their errors follow from 

mx

mu nmg nmĝ

 

∑
=

=
k

k ux
1l

l

vv       and      .                                                                                      (23) ∑
=

∆=∆
k

k ux
1l

l

vv

 
Regularisation is now always required, while controlling with the regularisation parameter the 
misfit norm. Since the data should be neither under-interpreted nor over-interpreted, the 
appropriate condition to be satisfied is 2|| yδ =∑∆

n
ny2 . If weighted data  are 

interpreted, the condition simplifies to 

nnn yysy ⋅∆=′ /0

2|| y′δ 2
02 sN ⋅= . When data errors have been 

underestimated or when data with well determined errors are inconsistent with 1D models, it 
may not be possible to lower the squared misfit norm to the desired level, and the condition 
has to be relaxed to 2|| y′δ 2

02 sNq ⋅= , where  is some properly chosen constant. 1>q
 
With  there exists no upper limit for the number of layers, but increasing it beyond 
any reasonable limit does not improve resolution which always should be taken into 
consideration. Hence, it suffices to select M as to give the model a quasi-continuous 
appearance, while the selection of a suitable thickness d

NM 2>

′  is not any longer critical.  
 
In the limit of a truly continuous model, with zdd ′→′ and zdzxdxxu mmm ′′→−= − /)(1  for  

, the minimum-norm solution minimizes in  the derivatives of the 
logarithmic resistivity with respect to the conductivity-weighted depth 

∞→M 2|/| zddx ′
z′ . Translated into true 

depth with zdzzd )(/0 ρρ=′  according to eq. (1), the minimized squared model norm is 
21

0 |//| dzdρρρρ − . In this sense the finely subdivided models belong to the class of 
minimum gradient models. Constable et al. (1987) introduced the denomination of Occam-
models, when they are derived with a minimum of assumptions and thus with the smallest 
measure of arbitrariness. In our understanding not only the finely subdivided models should 
be regarded as Occam-models, but also the sparsely subdivided models, when as outlined the 
number of layers as well as the position of layer boundaries is required by the data. 
 
  5   Resolution and model accuracy 
 
So far we have used global criteria when deriving models, i.e. the misfit norm involves the 
residuals of all frequencies and the model norm the model parameter of all layers. In contrast 
resolution and accuracy represent local criteria because they concern modelling result only for 
a specified target layer  or target depth km = kz′ . Even though it would be possible to derive 
for this layer or depth a best resolved or best determined model or a combination of both, this 
will not be our primary goal. Instead we seek to formulate solutions, which when applied to 
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hypothetical data with hypothetical errors would yield a hypothetical model in accordance 
with the just described local criteria. 
 
 5.1 Models with the best possible resolution  
 
The first task is to define a measure for resolution, which when brought to a minimum 
provides the best achievable resolution for a given target layer or target depth. We consider 
two options. The first measure, here defined for discrete models, is 
 

2)( km
m

kmk aD δ−=∑ ,                                                                                                              (24) 

 
with 1=kmδ  for  and zero otherwise. This measure approaches zero, when for perfect 
resolution 

mk =

kmkma δ→ . The second measure is an averaging length   
 

km
m

kmk Ja∑=∆ 2 ,                                                                                                                      (25) 

 
again in the formulation for discrete models . This second measure is the key element of the 
Backus & Gilbert (B&G) theory, in which k∆  indicates the width or spread of the depth 
range, over which the model is averaged (cf. for example Schmucker & Weidelt, 1975; 
Section 6.1 or Parker, 1996; Section 4.02). In eq. (25) it is defined as a dimensionless number 
for a spread in units of d . The factor  involves the squared distance  between the 
m-th layer and the target layer in order to bring the resolution coefficients  as closely as 
possible to those for a perfect resolution.   

′ kmJ || km −

kma

 
We start with the problem to find the minimum of  and return for a moment to the singular 
value decomposition. We note that in 

kD
TVVGHA ==  a connection is established between 

resolution and the eigenvectors jv . Utilizing their orthogonality, we expand the rows of A  in 

terms of the components of jv  and seek expansion coefficients kjβ in  which 

minimize . Setting the derivatives of  with respect to 

mj

p

j
kjkm va ∑

=

=
1
β

kD kD kjβ  for  to zero gives jj ˆ=
 

0}{2 ˆ
ˆ

=−=
∂
∂ ∑ ∑ jmkmmj

m j
kj

jk

k vvD δβ
β

, 

 
which with  reduces to jjjm

m
mj vv ˆˆ δ=∑ 0)(2 ˆˆ =− jkjk vβ  or jkjk v ˆˆ =β . The resulting coefficients 

 are readily identified as the elements of the matrix product ∑=
m

mjkjkm vva TVVA =   in the k-

th row and m-th column. This shows that any pseudo-inverse leads to a solution of minimum 
 and in this sense to models of maximum resolution, regardless of other minimizing 

criteria. The least squares solution of eq. (19) has to be exempted, since it implies  .  
kD

0=kD
 
For reasons which will be come transparent soon, we turn to an alternative way to minimize 

 by substituting the resolution coefficients  in eq. (24) according to eq. (16). kD kma
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Proceeding as before, now with derivatives towards the solution coefficients  at , we 
obtain 

knh nn ˆ=

 

0)((2 ˆ
ˆ

=⋅−=
∂
∂ ∑ ∑ mnkmnm

m n
kn

nk

k ggh
h
D δ , 

 
for . After division by two and after changing the sequence of summations the 
resulting minimum condition for  is 

Nn 2,..,2,1ˆ =

kD
 

0ˆˆ =−∑∑
m

knmnnm
n

kn gggh  .                                                                                                    (26)  

 
We identify the sum over m readily as the element of the matrix product TGG , as it appears 
in eq. (20), for the n-th row and -th column. Rewriting this equation in the form n̂

TT GGGH = , the explicit expression for the k-th row reproduces eq. (26) in 
 

∑∑ =
m

knmnnm
n

kn gggh ˆˆ . 

 
This verifies the conclusion from above for the special case of an un-regularized minimum 
norm solution which fully explains the data. 
 
The B&G theory is based on the same preposition that a model exists which can reproduce the 
data without misfit residual. Substituting then in eq. (25) the coefficients  again with the 
aid of eq. (16), the minimum of the spread is found by differentiation of  towards  for 

, leading to 

kma

k∆ knh

nn ˆ= 02 ˆ
ˆ

==
∂
∆∂ ∑∑ kmmnnm

m n
kn

nk

k Jggh
h

 or 

 
0ˆ =∑ ∑ kmmn

n m
nmkn Jggh                                                                                                          (27) 

 
for . We note that except for the added factor  and zero right-and-sides, the 
minimum condition of the spread corresponds to the minimum condition for  in eq. (26). 
In order to obtain a system of inhomogeneous equations, B&G add the condition  

similar to the constraint applied to numerical filters. Thus when the model is uniform with  
equal to some constant , the averaged model parameter 

Nn 2,..,2,1ˆ = kmJ

kD
1=∑

m
kma

mx

cx
cm

kmck axx ∑=v  is correctly .  cx

 
We regard now the model )(zx ′ }/)(ln{ 0ρρ z′=  to be a continuous function of depth z′ , 
thereby following the B&G theory in its original formulation. But since we continue with 
discrete data, eq. (17) remains valid, now yielding averages kxv  of )(zx ′  for a specified target 
depth . With , kz′ zdd ′→′ zdzGg nnm ′′→ )(  and zdzAa kkm ′′→ )(  we replace eq. (7)  in real 
notations by 
 

zdzxzGy nn ′′′= ∫
∞

)()(
0

 ,                                                                                                         (28) 
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without allowance for a misfit residual. Furthermore  
 

∫
∞

′′=
0

)( zdzAx kk
v       and                                                                       (29) )()( zGhzA n

n
knk ′=′ ∑

 
take the place of eqs (15) and (16), with  as condition for the now continuous 

resolution function . The definition of the spread is changed in correspondence to eq. 
(25) to 

1)(
0

=′′∫
∞

zdzAk

)(zAk ′

 
zdzJzA kkk ′′′=∆ ∫

∞
})()}({ 2

0
                                                                                                   (30) 

 
and the minimum condition of eq. (27)  for the spread to 
           

0)()()( ˆ0
=′′′′∑ ∫

∞
zdzJzGzGh kn

n
nkn .                                                                                       (31) 

 
It is not intended to conduct an iterative process, in which the data kernel  is adapted 
iteratively to a sequence of model approximations. Therefore we shall use here exclusively 
the model-independent approximation 

)(zGn ′

  
)2exp(2)0( zG nnn ′= αα                                                                                                             (32)  

 
as it follows readily from eq. (6), here with its real part for Nn ≤  and its imaginary part for 

, noting that the data kernel as well as the resolution functions are now dimensioned 
quantities. Evaluation of the condition for 

Nn >
)(zAk ′ with this approximation gives with the aid of 

eq. (29)  
 

zdzAk ′′∫
∞

)(
0

=                                                                            (33)                         1
0

)0( ==′ ∑∫∑
∞

n
knn

n
kn hzdGh

 
after changing the sequence of integration and summation. In the case of layered models the 
sum over the data kernels is always unity, as shown in Appendix B, whether or not 

they are approximated, leading in 

∑
m

nmg

 
1=== ∑∑∑∑

n
kn

m
nm

n
kn

m
km hgha                                                                                            (34) 

 
to the same result. Differentiation of these conditions with respect to  for  gives unity 
and thus the term to be added to the minimum conditions in eqs (27) and (31) is solely a 
Lagrange multiplier 

knh nn ˆ=

kλ . Thus altogether we have 12 +N  linear equations for the same 
number of unknowns,  solution coefficients  and one Lagrange multiplier. These 
equations are 

N2 knh

 
0ˆ =+∑ knn

n
kn bh λ  for   and Nn 2,..,2,1ˆ = 1=∑

n
knh                                                                (35) 
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with 
 

kmmn
m

nmnn Jggdb ˆˆ ∑′=         or       . zdzJzGzGb knnnn ′′′′= ∫
∞

)()()( ˆ0ˆ

 
In the case of a discrete model the layer thickness d ′  has been added as a factor to obtain in 
either case a dimensioned spread. In the case of a continuous model the integral can be solved 
analytically with the model-independent approximation  from eq. (32), while for discrete 
models we can use either the approximation  of eq. (6) or the exact data kernel for a 
preconceived model. 

)0(
nG

)0(
nmg

 
It remains to decide upon the factors  and kmJ )(zJk ′ . The B&G theory recommends to use the 
quadratic form , whereas a suitable value for the constant c  is obtained 
as follows:  Suppose we have a delta-shaped resolution function, which is zero outside a small 
depth range of width 

2)()( kk zzczJ ′−′⋅=′

z′∆  and inside this range z′∆/1  to meet the condition for . It is 
then reasonable to require that  equals 

)(zAk ′

k∆ z′∆  which yields 12=c . Translated to the discrete 
case the requirement is that the dimensioned k∆  should be equal to the layer thickness d ′ , 
which leads to  .  2)(121 kmJkm −⋅+=
 
The system of linear equations can be solved with standard methods and obviously the 
solution has to be repeated for each chosen target layer or target depth, even though the 
factors  and kmJ )(zJk ′  are the only quantities, which vary. Numerical stability should be of 
no concern. EM responses which are suitable for a 1D interpretation cover rarely more than 
one or two decades in frequency, with ten estimates per decade at the most. Once the 

solution coefficients and the Lagrange multiplier have been found, an averaged model 
parameter could be derived according to eq. (17). But unless exact data kernels for a 
preconceived model have been used to determine the coefficients  in eq. (35), such models 
are of limited value unless they would provide a starting model for a here not intended 
iterative process. Much more relevant are the model variances as provided by eq. (18).  There 
is no need to calculate the spread 

N2 knh

nnb ˆ

k∆  from its respective definition because, as shown in 
Appendix D, it is identical with the Lagrange multiplier except for the sign. 
 
Turning now to the resolution, we have to distinguish between continuous and discrete 
models. In the second case resolution coefficients are readily determined according to eq. 
(16). For continuous models we subdivide the model space into M depths segments of equal 
width , which is small enough to approximate the resolution function sufficiently well, 
while M should be large enough to allow a fairly complete display of this function, which 
tends to zero with increasing downward distance from the target depth. For each depth 
segment we define now a mean value of the data kernel 

z′∆

 

zdzG
z

G
zz

zz nnm
m

m

′′
′∆

= ∫
′∆+′

′∆−′
)(1 2/

2/

v
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with  again as the depth of the centre of the m-th depth segment, and the integration can be 
carried analytically with the approximated data kernel of eq. (32), Then a corresponding mean 
value of the resolution function follows from eq. (29) as 

mz′

 
∑=

n
mnknkm GhA

vv
,                                                                                                                     (36) 

which is the equivalent of  for layered models. dakm ′/
 
 
 5.2 Models with the smallest possible variance  
 
The determination of models of minimum variance 2

kxv∆  is a quite simple matter. Assuming 
that all data have the same error , the differentiation of the relevant eq. (18) with respect to 

 for  gives   
0s

knh nn ˆ=
 

02 ˆ
2
0 =+ knkhs λ   for Nn 2,..,2,1ˆ = ,                                                                                         (37) 

 
which implies that the solution coefficients are the same for all  and, in view of eqs (33) and 
(34), we obtain . This leads in a straightforward manner to the minimum value of 
the model variance  

n̂
Nhkn 2/1=

 
Nsxk 2/2

0
2 =∆v ,                                                                                                                        (38) 

 
the same for all target layers or target depths, which reflects in Nsxk 2/0=∆v  the 
propagation law of errors. The determination of the not so easily found spread  is dealt 
with separately in Appendix D. It is readily seen that eq. (38) remains valid for a data set with  
non-zero variable errors , when we insert for  their harmonic mean .  

k∆

ny∆ 0s ∑ −∆
n

nyN 1/2

 
 5.3 Trade-off models between resolution and accuracy  
 
Model resolution and model accuracy are conflicting criteria, when data errors are taken into 
account, i. e. when a well resolved model cannot be very exact at the same time, and vice 
versa. In fact models for minimum spread k∆  are models with the greatest variance , and 
again vice versa. The B&G theory employs therefore a dimensionless trade-off parameter w in 
[0,1] and seeks now the minimum of a linear combination of spread and variance, with

2
kxv∆

1=w  
for minimum spread and  for minimum variance. Combining then eqs (35) and (37), the 
2  linear equations to be solved for  are 

0=w
1+N 0>w

 
0)1( ˆ

2
0ˆ =+−+∑ knknn

n
kn hswbhw λ  for Nn 2,..,2,1ˆ =     and   1=∑

n
knh .                               (39)     

 
We can proceed as in Subsection 5.1 to determine the model variance and the resolution 
coefficients, while  follows now from a combination of the Lagrange multiplier and the 
model variance, as shown again in Appendix D. 

k∆
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A visual display of this balanced interpretation is provided by so-called trade-off curves, 
which for a selected target layer or target depth show kxv∆  in dependence of , with  as 
curve parameter decreasing from unity to zero.  These curves start at  for the best 
possible resolution, associated with maximum and unacceptable modelling errors, and all 
curves merge at  into the same minimum model error according to eq. (38), associated 
with a maximum and equally unacceptable spread. Very instructive are displays of trade-off 
curves for a sequence of target depths to visualize the decrease of resolution with increasing 
depth (cf. Fig. 6). They demonstrate also that a small sacrifice in resolution reduces modelling 
errors dramatically. Otherwise no fixed rules exist how to select an optimal trade-off 
parameter. A possible choice will be presented in connection with Fig. 4. 

k∆ w
1=w

0=w

 
 
 6   Demonstrations and comments to the figures 
 
6.1  1D model interpretations with the six harmonics of daily variations 
 
The various methods to derive models and to consider their resolution will be applied now to 
sets of empirical and hypothetical EM responses. We shall start with those for the six 
harmonics of daily variations. These are C-responses, obtained with the gradient method for 
the observatory Fuerstenfeldbruck in Southern Germany (cf. the contribution “ Ein Kontinent 
erwacht ….” in this volume). They are converted into data  according to eq. (8). The 
scaling resistivity is set to 

ny
Ω= 700ρ m, and thereby conductivity-weighted  and true 

depths  will not be too different within the first few hundreds kilometres below the Earth’s 
surface. Penetration depths  reach from 332 km for the sixth harmonic (T=4 hrs) 
to 660 km for the first harmonic (T=24 hrs), thus setting the frame for constructing models. 
For completeness the following table includes also apparent resistivities 

)(z′
)(z

)Re(* Cz =

aρ  and *ρ  as well 
as phases ϕ . With 4/πϕ >  throughout the formula  applies. 
The decline of 

ϕρωµρ 22
0 cos2)Im(2* ⋅== aC

*ρ  from close to Ω100 m for the sixth harmonic to about 4 m for the first 
harmonic indicates the range of model resistivities which to expect. Numbers below the 
tabular entries are errors at the 95% confidence level.  

Ω

 
--------------------------------------------------------------------------------------------------------------- 
Period     C-response    App. Resistivity aρ  & *ρ         Phase ϕ             Logarithmic response 
----------------------------------------------------------------------------------------------------------------    
24 hrs          41.9     4.2  kmi151660− mΩ mΩ               77.1 degr            iy 121.1513.01 +−=
                    (17)                (2.2)          (0.9)                     (1.4)                                   (0.052) 
12 hrs              66.0           23.0                      65.3                    i251546− iy 709.0058.02 +−=
                    (13)                (2.9)           (2.4)                    (1.2)                                    (0.043) 
  8 hrs             75.1            32.6                     62.2                     i244463− iy 601.0070.03 ++=
                    (16)               (4.6)            (4.3)                   (1.8)                                     (0.061) 
  6 hrs             78.2            43.5                     58.2                     i244393− iy 460.0111.04 ++=
                    (26)                (8.8)           (9.3)                   (3.2)                                     (0.112)         
4.8 hrs            98.3           60.4                      56.3                    i257386− iy 396.0339.05 ++=
                    (53)                (22.5)       (24.9)                   (6.6)                                     (0.229)          
 4 hrs            102.2           83.5                     50.3                    i276332− iy 184.0378.06 ++=
                    (62)                (29.4)       (37.5)                   (8.2)                                    (0.287)         
----------------------------------------------------------------------------------------------------------------    
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The monotonic increase of penetration depths with increasing period as well as the smooth 
change of *ρ  with period suggests that the data are consistent with 1D models. Figs 1 and 2 
present four equivalent models of different design, including their errors. The models to the 
left are sparsely subdivided and the models to the right finely subdivided, with the objectives 
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as outlined in Subsection 4.6 and 4.7. It has been found that in the first case three layers are 
sufficient to account for the empirical estimates. An increase to more layers would not 
improve the model fit, while the best fitting 2-layer model has substantially greater misfit 
residuals, recalling that these are least squares models directed towards the best fitting model. 
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In Fig.1 layer boundaries are in accordance with eq. (2), i. e. the ratio mmd ρ/  is kept 
constant, in Fig.2 they have been optimized with layer weights according to eq. (3), without 
reducing however the misfit residuals to any significant extent, as it will be seen. Both 3-layer 
models show step-wise reductions of resistivity from 90 Ωm at the top to 0.1-0.2 Ωm below 
700 km depth, where the underlying uniform substratum begins, but in the model with 
variable layer weights the decline occurs in a narrow depth range between 650 and 700 km. In 
either case very moderate regularisation is required to ensure convergence of the iterative 
process, and the regularisation parameter α  has been adjusted to limit layer resistivities to 
three orders of magnitude. 
 
The models on the right are regularized minimum norm models with up to 32 layers. They 
provide the expected smoothed image of the 3-layer models, moving also the steep ascent 
downward to a fairly narrow depth range beneath a rather structure-less upper mantel. 
Furthermore, the increase from eight to 32 layers does not reveal any additional structural 
details except for a marginally significant intermediate maximum of ρ  beneath the top layer. 
 
Small full circles with error bars in the displays are the six empirical responses in a ** z−ρ  
presentation, and the large open circles without error bars are the ** z−ρ  values for the 
model at the same frequency, thus visualizing in one single illustration the degree of fit 
between empirical and model responses together with the model itself. Numbers below to the 
left indicate the harmonics and thus frequencies in cycles per day (cpd). The arrays of 
numbers in the upper left corner represent resolution matrices A . As a visual aid coefficients 

 are shown as bold-faced large numbers 9. With decreasing size of the coefficients 
numbers get thinner and smaller until they become very small and faint zeroes for 

9.0≥kma
1.0<kma . 

These arrays verify that the sparsely subdivided models are indeed well resolved. Top layer 
and substratum show an almost perfect resolution, while for the second layer between 60 and 
80 % of the shown model resistivity come from the true resistivity of this layer itself. In the 8-
layer model also the top layer and to some extent the substratum appear as well resolved, 
while for the layers in-between 70-80% of the displayed model resistivities arise from true 
resistivities in the target layer and the two layers next to it, leaving 20-30% for contributions 
from a greater distance. Since it would be impossible to present in the same way the 
resolution matrix of a 32-layer model, it will be shown separately in Figs 5 and 6, even though 
for two target depths only. 
 
The two numbers below the resolution matrices are the rms misfit residual modε  and, in 
parenthesis, the rms data error datε : 
 

Ny
n

n 2/|| 2
mod ∑= δε      and        Ny

n
ndat 2/2∑∆=ε                                                        (40) 

 
or 0sdat =ε , when weighted data have been interpreted as it is done here. With 

aaCCy ρρ /||/2 ∆=∆⋅=∆  an rms data error of 0.079 implies that the responses have been 
determined with accuracies of about 8% for aρ  and 4%  for , while an rms misfit residual 
of the same size means that model responses account for 92% of 

|| C

aρ  and for 96% of . The 
intentional exact agreement of 

|| C

modε  and datε  has been achieved by adjusting the regularisation 
parameter α  accordingly. A better model fit could have been easily obtained by less 
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regularisation, leading to a more structured model, but then with a model misfit below the 
level of data errors. 
 
We conclude that all four models explain the data equally well, and it is not possible to say, 
which one conforms better to reality. They may be regarded as uniquely determined models 
within their specified frame of construction. There will exist, for example, no other 8-layer or 
32-layer regularized minimum norm model, in terms of logarithmic resistivity changes from 
layer to layer, which could produce also equality of modε  and datε ., and with ∞→M  an  

equally unique continuous minimum gradient model in terms of 21
0 |//| dzdρρρρ −  would 

evolve.  
 
 
  6.2  Resolution curves for 1D models obtained from hypothetical EM responses 
 
We shall investigate now the resolving power of EM responses quite generally, that is in 
terms of the data kernels for the frequencies involved and without specifying any particular 
data set or model. Depending on whether we assume the hypothetical models to be continuous 
or discrete, either mean values  of the resolution functions kmA

v
)(zAk ′  or ratios dakm ′/  are 

plotted versus depth mzz ′=′  which is the depth of the centre of the m-th depth segment, to 
which these resolution measures belong. All segments have the same thickness z′∆  and, 
when discrete models are considered, they extend uniformly downward to km 
depth. Unless stated otherwise all calculations are carried out with model-independent 
approximate data kernels  and  according to eqs (32) and (6), while  is chosen 
to produce a sufficiently smooth appearance of the resulting resolution curves to 
approximate . They are shown for two exemplary target depths . For reasons which 
will become transparent soon, we shall use as target depths 270 km for the upper part of the 
hypothetical models and 570 km for their lower part. Areas below the resolution curves are 
unity or at least close to unity.   

1920=′zdM

)()0( zGn ′ )0(
nmg z′∆

)(zAk ′ kz′

 
We start with considering the resolution, which can be achieved with the six harmonics of 
daily variations. Fig. 3 on the left shows the resolution coefficients for a discrete minimum 
norm model without regularisation, i. e. eqs (26) have been solved towards solution 
coefficients  which when inserted into eq. (16) yield the displayed ratios knh dakm ′/  for 

km. They are compared on the right with mean values 20=′d kmA
v

 for a continuous minimum 
spread model, deriving this time the solution coefficients from eqs (35) and subsequently the 
mean values from eq. (36). Arrows mark the respective target depth and the number below in 
parenthesis gives the spread in kilometres as derived from eq. (D3). In both cases we assume 
error-free data. 
 
As it may have been expected, the minimum norm model has the best resolution, but on the 
expense of prominent negative side lobes. Since a severely under-determined system of linear 
equations has been solved, with 12=N  data against 9620/1920 ==M  unknowns, the 
resulting presumably strongly oscillating model would be unrealistic anyhow. The minimum 
spread model has a substantially lower resolution at target depth, but no negative side lobes 
appear, even though there exist small oscillations near to the surface and at great downward 
distances form the target depth. But the resulting B&G model would be quite realistic and 
sufficiently stable against data errors, as it will be demonstrated in the next illustration. It 
should be noted that Fig. 3 shows the highest resolution which can be achieved with six 
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responses from 1 cpd to 6 cpd, either in terms of minimum spread in the Backus-Gilbert 
theory or in terms of minimum  as defined in to eq. (24). For the upper part of the resulting 
hypothetical model we obtain a spread of 272 km and for its lower part a spread of 341 km, 
indicating that even under these most favourable conditions no small-scale structures can be 
resolved within the Earth’s mantle. 

kD

 
Fig. 4 repeats the B&G resolution curve in Fig. 3 on the right, but now with the allowance of 
errors. Hence, they represent the resolution of trade-off models according to Subsection 5.3, 
i.e. eqs (39) have been solved, while k∆  has been derived from Eq. (D2). The critical choice 
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of the trade-off parameter w has been as follows. With 60=′∆z km and  the sequence 
of depth segments corresponds to the sequence of layers in the 32-layer model of Fig. 2 which 
has the same layer thickness km. In this way the two target depths are the centres of 
the fifth and tenth layer of this model, respectively. Then w is chosen to reproduce exactly the 
model errors  in these layers. The complete trade-off curves follow in Fig. 7. Resolution 
curves on the left refer as before to a continuous model, while those on the right to a discrete 
32-layer model. It is comforting to see that this change has no marked effect, neither on the 
appearance of resolution curves or on their spread. Furthermore, the inclusion of data errors of 
4% for ||  or 8% for 

32=M

60=′d

kxv∆

C aρ  has no dramatic effect either, with moderate increases of  from 
272 to 314 km and from 341 to 458 km, respectively. 

k∆

 
The left display in Fig. 5 repeats Fig. 4 on the right, but now with the exact data kernels for 
the 32-layer model of Fig.2. It is again reassuring to note that also this modification does not 
lead to any significant changes in resolution and spread, demonstrating that studies of this 
kind with model-independent data kernels are quite adequate, without need for preconceived 
models. But under special circumstances this conclusion may have to be re-considered as 
shown towards the end of this subsection. The presentation on the right contains the resolution 
coefficients  for kma 5=k  and  as targets in the 32-layer model of Fig. 2. Since this is a 
minimum norm model, even though now with regularisation, it is not surprising to observe 
negative values towards the surface and towards greater downward distances from the target 
depth, even though they are not as conspicuous and regular as in Fig. 3 on the left. Otherwise 
the two pairs of resolution curves in Fig. 5 agree quite well, which means that regularized 
minimum norm and B&G trade-off models have quite comparable resolutions, provided that 
the choices of the parameter 

10=k

α  and  are appropriate and compatible with each other.  w
 
So far resolution curves have been shown versus a conductivity-weighted depth z′ . In order 
to obtain a more comprehensible display, the resolution curve on the left of Fig. 5 is shown 
again in Fig .6, but now as a function of true depth. The transfer from z′  to z  depths has 
been carried out with the resistivities of the 32-layer model. Hence, the spacing of coefficients 
is slightly increased within the first layers, where mρ  exceeds 0ρ , while the resolution curve 
becomes more and more compressed towards greater depth and declining layer resistivites 
until they end at about 750 km. Hence, EM responses for daily variations cease to yield 
information about mantel resistivities beyond this depth, exceeding the penetration depth 

*z of the first harmonic by nearly 100 km.  
 
For completeness Fig. 6 shows on the right trade-off curves of model errors  versus 
spread , assuming again a continuous model. Arrows mark those points, where the model 
errors  match those of the 32-layer model at the same target depth and we note that the 
chosen form of regularisation for this model has produced an optimal compromise between 
model resolution and accuracy. Very impressive is the steep decline of model errors, when 

 is moved slightly away from its minimum, while for  both curves merge into the 

same ultimate model error, here 0.023

kxv∆

k∆

kxv∆

k∆ 0→w

12/079.0=  according to eq. (38)  with  as 
data error. 

079.00 =s
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We conclude by considering various possibilities to improve the resolution power of 1D 
sounding. Increasing the number of response estimates with a closer spacing in frequency 
improves accuracy, but not resolution, which means that we have to expand the frequency 
range beyond the decade of daily variations. To this end we add hypothetical responses for 
two more decades, again with six estimates per decade, extending from 10 to 60 cpd for 
substorm variations and from 0.1 to 0.6 for smoothed storm-time variations. This gives 18 
responses for periods ranging from 24 minutes to 10 days. The resulting resolution curves are  
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shown in Fig. 7. The curve to the left is for exact data and the curve to the right for error-
bearing data. We assume thereby that all data have the above stated errors of daily variations, 
and we adjust the trade-off parameter again to yield at target depth the same model errors as 
the 32-layer model. Continuous models are assumed with model-independent approximated 
data kernels as for the left display in Fig. 4. This enlargement of the data basis improves the 
resolution indeed substantially and averaging depths are now small enough that structural 
details become visible, when their extent in depth is at least comparable with the spreads of 
187 and 296 km, respectively. 
 
We address finally in the same way two specific questions, whether EM soundings could 
detect a frequently postulated asthenospheric conductor and also a proposed mid-mantle 
conductor at about 800 km depth. Therefore we test now their resolution at z′  target depths of 
150 km and 810 km, and by changing the scaling resistivity 0ρ  from m  to m for the 
mid-mantle, we can expect that from, say, 700 km downwards 

Ω70 Ω1
z′  correspond to true depth 

except for a certain off-set due to the more resistive uppermost mantle. We proceed once 
more from 18 responses over three decades and assume for them that they have the same 
errors as daily variations. Noting that the first target depth corresponds to the third layer of the 
32-layer model and the second to its fourteenth layer, the trade-off parameter are adjusted 
again to yield the modelling errors of these layers. 
 
For the study of the asthenosphere we add six responses from 100 to 600 cpd for slow 
pulsations to those of substorms and daily variations. For the mid-mantle conductor we add  
six responses for the long-periodic Dst continuum from 0.01 to 0.06 cpd to those for 
smoothed storm-time and daily variations. Thus periods extend from 144 seconds to one day 
and from 4 hours to 100 days, respectively. As Fig. 8 shows, we have achieved now a nearly 
delta-shaped response for the upper mantle, even though the averaging depth still measures 
100 km. Furthermore, the mantle below 750 km has come within the reach of EM soundings, 
with an acceptable spread of less than 400 km. The overall conclusion is that both conducting 
zones, if they exist, could be detected, even though in case of the asthenophere a possible 
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screening by a surface or crustal conductor has not been taken into account yet. It would 
require further studies with an exact data kernel for preconceived models. 
 
Fig. 9 complements Fig. 8 by demonstrating the loss of resolution, when responses are 
restricted again to the six harmonics of daily variations. We note that the two target depths are 
then outside their z*-depth range from 330 km to 660 km. Therefore any modelling result for 
the asthenosphere would represent an average over the entire crust and upper mantle, while 
for the mid-mantle target depth the spread has increased to more than 500 km.  
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  Appendix A. The Psi-alorithm 
 
We assume induction in a layered plane model of M layers by a quasi-uniform TE field and 
proceed from the solution of the 1D diffusion equation  for the 

electric field  at depth z within the m-th layer. With 
xx EidzEd ⋅= ρωµ // 0

22

xE mnm iK ρµω /0=  for angular 
frequency nω  and  as depth to the top of this layer mz
 

)}(exp{)( mmmx zzKAzE −−= )}(exp{ mmm zzKB −++  . 
 

With ωi
dz

dEB x
y /−=  as magnetic field, a thus defined C-response yx BiEC ω/=  yields 

 

m

m

m
m U

U
K

C
−
+

=
1
11      with     mmm ABU /=

 
for the top  of the m-th layer and mzz =
 

+

+
+

−
+

=
m

m

m
m U

U
K

C
1
11     with      . }2exp{ mmmm dKUU =+

 
for the bottom . Introducing mmm dzzz +== +1 )(ln2 CK=Ψ  as logarithmic response, we 
obtain for    mzz =
 

}{tanh4}ln{2 1
mmmm UCK −==Ψ                                                                                          

 
with a corresponding expression for the bottom. According to eq. (2) we replace now  
by 

mmdK
dn ′α  for an evenly subdivided model in z′  depth, with d ′  as constant layer thickness; 

00 / ρµωα nn i= , where 0ρ  denotes the scaling resistivity. Then the thus defined γ -ratio of 

the logarithmic responses at the top and bottom in terms of  is +
mU
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}{tanh
}2exp{{tanh

1

1

+−

+−

+

′−⋅
=

Ψ
Ψ

=
m

nm

m

m
m U

dU αγ  .                                                                                  (A1) 

 
 
The absolute value  never exceeds unity and remains near to zero, provided the changes 
of resistivity from layer to layer are moderate with, say, 

|| +
mU

3.2|)/(ln| 1 ≤+ mm ρρ . Then to second 
order in  the || +

mU γ -ratio can be approximated by 
 

}2exp{ dnm ′−= αγ                                                                                                                  (A2) 
 
for all layers. Continuity of the C-response across layer boundaries implies  or in 
terms of the logarithmic responses , which in combination with eq. 
(A2) gives 

1+
+ = mm CC

)/(ln 11 ++
+ +Ψ=Ψ mmmm KK

 
}{ 11 mmmmmmm xx −+Ψ=Ψ=Ψ ++

+ γγ ,                                                                                     (A3) 
 
with )/(ln 0ρρ=x  from eq. (9).  
The Psi-algorithm starts with  on the surface of the underlying uniform half-space at 
depth , with  and thereby also 

0=ΨM

Mzz = 0=MB .0=MU  Then from eq. (A3) 
 

)( 111 −−− −⋅=Ψ MMMM xxγ ,  22112122 )1( −−−−−−−− −−+=Ψ MMMMMMMMM xxx γγγγγ  ,  ……. , 
 

11221112211211 )1(......)1(........ xxxx MMMMM γγγγγγγγγγ −−++−+=Ψ −−−−  . 
 
We connect now the surface value 1Ψ  to the response  as defined in eq. (8). With ny

)(1 nCC ω=  as surface value of the C-response, 101 / ρµωniK =   and nα  from above we 

obtain  with  denoting the 
response of the model. Adding then  to 

1
mod

1111 )}(ln{2}ln{2 xyxCCK nnn −=−==Ψ ωα 11
mod xyn +Ψ=

1x 1Ψ  changes the last term from 11 xγ−  to 11)1( xγ−  
and the forward problem to find the response for a given model takes the form of the quasi-
linear functional of eq. (5) :   
 

m

M

m
nmn xgy ∑

=

=
1

mod      with       )1(.... 121 mmnmg γγγγ −= −                                                          (A4) 

 
as data kernel, setting 10 =γ  and .0=Mγ  When the use of the approximated γ -ratio from eq. 
(A2) can be justified for all layers, we obtain the model-independent approximation 
 

)(sinh}2exp{}2exp{})1(2exp{)0( dzdmdmg nmnnnnm ′⋅′−=′−−′−−= αααα ,                            (A5) 
 
with dmzm ′−=′ )2/1(  as depth of the centre of the m-th layer, for starting the iterative 
process for 1D modelling, as outlined in Section 2.  
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When the model parameter  is replaced by mx 1−−= mmm xxu  according to eq. (10) to express 
the change of resistivities from layer to layer, with 00 =x , eq. (A3) changes into 
 

)( 11 ++ +Ψ=Ψ mmmm uγ                                                                                                             (A6) 
 
and the Psi-algorithm in terms of  into mu
 

MMM u⋅=Ψ −− 11 γ ,  12122 −−−−− +=Ψ MMMMMM uu γγγ  ,  ……. , 
 

2132112211211 .............. uuuu MMMM γγγγγγγγγ ++++=Ψ −−−  . 
 
With  the new quasi-linear functional for the forward problem follows as 11 xu =
 

m

M

m
nmn uguy ∑

=

=+Ψ=
1

11
mod ˆ    with    121 ....ˆ −= mnmg γγγ                                                            (A7) 

 
as data kernel, setting again 10 =γ . Their model-independent approximation is 
 

)}2/(2exp{})1(2exp{ˆ dzdmg mnnnm ′−′−=′−−= αα                                                              (A8) 
 
in the same notations as in eq. (A5). 
 
 
  Appendix B.  Invariance of  solutions against the choice of the scaling resistivity 0ρ  
 
We test whether the solution m

m
nmn xgy ∑=mod  of the forward problem depends on the chosen 

scaling resistivity 0ρ . A change to a new value 0ρ′  means that the constant }/ln{ 00 ρρ ′=c  is 
added to the data and to the model parameter, i.e.  is changed to  and  

to . The data kernel remains the same, provided that the ratio 

mod
ny cyy nn +=′ modmod

mx
cxx mm +=′ mmd ρ/  in eq. (2) 

is kept constant by replacing  by d ′ 00 / ρρ′′=′′ dd . Then as seen from the condition   
 

cycxgy nm
m

nmn +=+=′ ∑ modmod )( , 

 
invariance against the choice of 0ρ  implies that ∑

m
nmg  equals unity.  Eq. (A4) shows in 

 
1....)1(.........)1(1 1211221211 =+−++−+−= −−−∑ MMM

m
nmg γγγγγγγγγγ                             (B1) 

 
that this is the case. Invariance should apply then to the solution of the inverse problem as 
well, which has the following consequence: Under the stated condition for the data kernel also 
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the solution coefficients  remain the same. Then invariance of the solution  

requires that  which implies that 

knh n
n

knk yhx ∑=v

cxcyhx kn
n

knk +=+=′ ∑ vv )( 1=∑
n

knh  and thereby that 

 
1==== ∑∑∑∑∑∑

n
kn

m
nm

n
knnm

m n
kn

m
km hghgha  ,                                                                (B2) 

 
which is readily identified as the added condition of eq. (34) in the Backus & Gilbert theory.  
 
Replacing the model parameter  by mx 1−−= mmm xxu , with 00 =x  and thus , the 
forward problem to be solved becomes 

11 xu =

m
m

nmn ugy ∑= ˆmod  . The change from 0ρ  to 0ρ′  changes 

only  to , while  for 1u cuu +=′ 11 mm uu =′ ,..3,2=m  remain the same. We presume that d ′  has 
been properly changed to  to have unchanged data kernels. Invariance against the choice of d ′′

0ρ  requires in 
 

cycgugugcugy nnm

M

m
nmm

M

m
nmnn +=⋅+=++=′ ∑∑

==

mod
1

12
11

mod ˆˆˆ)(ˆ   

 
that  equals unity, which is the case as evident from eq. (A7), while invariance of the 

inverse solution 
1ˆng

n
n

knk yhu ∑= ˆv  leads in 

)(1̂11 cyhcuu n
n

n +=+=′ ∑vv      and     )(ˆ cyhuu n
n

knkk +==′ ∑vv   for ,..3,2=k   to 

11̂ =∑
n

nh       and       for 0ˆ =∑
n

knh ,..3,2=k ..                                                                     (B3) 

in analogy to eq. (B1). Then with as element of matrix kn

M

k
knnn hgb ˆˆ

1
ˆˆ ∑

=

= HGB =  

 

1ˆˆˆ 1
1

ˆˆ === ∑∑∑
=

n
n

kn

M

k
kn

n
nn ghgb &&                                                                                                (B4)                         

 
in analogy to eq. (B2). Furthermore it is readily verified that this equation applies also, when 
the model parameter is , and the same turns out to be approximately correct for eq. (B2) in 
conjunction with  as model parameter. 

mx

mu
 
We conclude firstly that the choice of 0ρ  has no influence upon the modelling results, and 
secondly that the elements of the resolution and information density matrix in given rows act 
like numerical filters upon model or data at the respective target depth or frequency, with the 
sum of filter weights being equal to unity.  
 
 
  Appendix C.  Differentiations with respect to the regularisation parameter α  
 
In order to simplify notations lower case letters are vectors and upper case letters matrices. 
Furthermore, the bar above the vector xv  of the averaged model is omitted. With 
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M
T IGGP α+=  the pseudo-inverse of eq. (21) leads with eq. (14) to  and 

, with . Differentiation of 
yGPx T1−=

1−= PGyx TT 11)( −− = PP T 1−P  with respect to α  yields 
 

1111
1

−−−−
−

−=−= PIPP
d

PdP
d
Pd

Mαα
 

 
(cf. Parker, 1994; eq. 30 in Section 3.02). Then 
 

xPxyGPPxxPPGyxx TTTT
T

11111 2 −−−−− ⋅−=−−=
∂
∂
α

 . 

 
The squared misfit residual norm to be differentiated next is 
 

GxGxGxyyGxyyGxyGxyyy TTTTTTTT +−−=−−= )()(δ  . 
 
Rewriting eq. (21) in the form   yields  and thereby yGxIGG T

M
T =+ )( α xyGxGG TT α−=

 
xxxGyyyyy TTTT ⋅−−= αδδ                                                                                               (C1) 

 
which represents a convenient formula to derive this squared norm. Differentiation with 
respect to α  yields 
 

xPxxxxxyGPPxxPPGyxxyGPPGyyy TTTTTTTTT
T

1111111 2)()( −−−−−−− ⋅+−=+⋅+−=
∂
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The final results in full notations are 
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∂
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    and      xIGGx
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T
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∂
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 .                (C2) 

 
 
  Appendix D.  The determination of spread k∆ in the Backus & Gilbert theory 
 
Insertion of  from eq. (16) and of kma )(zAk ′  from eq. (29) into the definitions for the spread 
in eq. (25), multiplied with  for a dimensioned quantity, and eq. (30), respectively, gives d ′
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nk
m n

nkk Jgghhd ˆ
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ˆ∑∑∑′=∆   and  . zdzJzGzGhh
n

knnnk
n

nkk ′′′′=∆ ∑∫ ∑
∞

)()()(ˆ0
ˆ

ˆ

 
After changing the sequence of summations or the sequence of integration and summations, 
these expressions are reduced to 
 

nn
n

kn
n

nkk bhh ˆˆ∑∑=∆
s

                                                                                                              (D1) 

 
with  as defined in eq. (35) for discrete and continuous models. Excluding the case nnb ˆ 0=w , 
eq. (39)  yields 
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and together with eq. (D1) the relation 
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With  according to eqs (33) and (34) and with 1=∑

n
nkh 222

0 k
n

nk xhs v∆=∑  from eq. (18) we 

obtain for the spread of trade-off models 
 

21
k

k
k x

w
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w
v∆

−
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λ ,                                                                                                           (D2) 

 
and thus for the spread of minimum spread models with 1=w   
 

kk λ−=∆  .                                                                                                                              (D3) 
 
Insertion of  from to eq. (37) for Nh nk 2/1= 0=w  yields finally the spread of minimum 
variance models in 
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