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Introduction The question of resolution and depth of investigation for the ill-posed MRS inverse
problem has been presented in few different ways. Most of them focused on analysing inversion
result either changing modeling parameters [6, 5] or using independent inversion runs [1]. A direct
estimation of maximum investigation depth for different loopsizes and resistivity cases can be achieved
if the maximum depth is defined as a1

e decreased sensitivity (respectively kernel function) value. All
of which listed above are more or less subjective and therefore a objective method of analysing model
resolution using singular value decomposition (SVD) is presented. Within this we derive a strong
dependency of loopsize, resistivity and resolution for a homogenous half space.

Quantifying resolution, depth penetration and image quality As shown in [3] the MRS forward
problem can be described as

VR(q) = ωL

Z

d3r
∣∣∣M(0)

N (r)
∣∣∣sin

(
qB+

T (r)
)

×B−
R (r) · ei[ζT (r)+ζR(r)]

×
[
b̂R(r) · b̂T (r)+ iB̂0 · b̂R(r)× b̂T (r)

]
(1)

and furthermore summarized to

VR(q) =

Z

d3r f (r) ·K(q,r)

whereK is the kernel or sensitivity function. This means the forward problem of MRS can easily be
written as a linear mapping without any kind of linear approximation

y = Ax (2)

while using mathematical standard descriptions A is the kernel or sensitivity function, x the water
content of the subsurface and y the measured signal. Following denotation of [2] singular value
decomposition to A can be written as

A = UΛV T = [Up U0]

[
Λp 0
0 0

][
V T

p

V T
0

]
(3)
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Figure 1: a) Kernel function of 100m loop diameter and 100Ωm homogeneous half space resistivity.
b) Model resolutionRm for this kernel function

Λp is diagonal and contains the singular values in decreasing orderλ1 ≥ ... ≥ λp ≥ λp+1 = ... = λq =
0, q = min(m,n), p rank of A. U ∈ C

n×n
1 andV ∈ C

m×m
2 denote unitary1 matrices formed by the

complete set of Eigenvectors of A. The pseudo (or generalized) inverseA† is then

A† = VpΛ−1
p UT

p (4)

Owing to the ill-posedness of the problem the inverse operator A† can resolve onlyxest = A†d which is
not exactly the true subsurface water content becauseA† 6= A−1. Hence an operator mapping between
x andxest describes the difference between the real water contentx in the subsurface and the invertible
noise free water contentxest . For our depth and resolution studies we focus at this model resolution
operatorRm

xest = A†y = A†Ax = Rmx (4)

Rm = A†A (5)

or in term of SVD

Rm = VpΛ−1
p UT

p UpΛpV T
p = VpV T

p (6)

It is obvious thatV V T = VpV T
p = δi, j is valid only for vanishing null-space (V0 = empty) and for this

particular casexest = x. For every non vanishing null-spaceRm acts as a weighting operator

xest
i =

m

∑
j=1

Rm
i, jx j (7)

1A is unitary if and only ifA−1 = AT
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Figure 2: Slice through model resolution matrix at various depth for calculated kernel function of
100m loop diameter and 100Ωm homogeneous half space resistivity. The inverted water content at
these depth is a weighted (by the function shown above) average of the complete real water content
distribution.

that means every nonzero off-diagonal element ofRm
i, j is decreasing model resolution for a specificxest

i
because parts of the true water contentx are mapped into one singlexest

i . AnalysingRm row by row
one can achieve detailed information on resolution for every xest

i and furthermore for any depth since
the index ofxest

i is identified with depth. In Fig. 2 selected rows ofRm are plotted. With decreasing
resolution the peak width increases and stronger side lobesappear. Following this interpretation ofRm

as weighting operator the resolution (or resolution radius) at any depth can be defined as full width at
half maximum for the main peak as long as the maximum of side lobes is small compared to the main
peak (Fig. 2 a). For larger depth the increasing influence of side lobes is shown in Fig. 2 b. In this case
it is no longer reliable to assignxest

i to a closed part ofx (resolution radius), but there is still sensitivity
for monitoring changes within deep structures. Thus two different ways are proposed to derive this
maximum penetration depth of one specific configuration (loop size and resistivity distribution). First
the position of the main peak maximum appears the be constantand can be defined as the maximum
penetration depth (Fig. 3 b). Second, as shown above for a vanishing null-space

VpV T
p = δi j (8)

and furthermore
m

∑
j=1

Rm
i, j = 1 (9)

As a result of this (see Fig. 3 a) for any non vanishing null-space

∑
j

Rm
i, j ≤ 1 ∀ j ∈ [max(peakwidth) max(peakwidth)/2] (10)

which means for a significant increasing value in Equation 10the side lobes influence decreases. Both
approaches show simular results for the maximum penetration depth.
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Figure 3: a) Position of the main peak maximum (main influenceto the water content in one specific
depth) compared to sum over peak (see eq. 10)
b) Resolution (peak width) and polynomial fit (due to numericmodel border effects) compare to sum

Resolution and depth penetration considering noisy conditions Taking real data into account
noise has to be included. After triangle inequality in Hilbert space the stability of the solution is
directly connected to ill-posedness of the Inverse Problemand the noise level of your data (for detail
see [4])

||xest
n − x|| ≤ ||xest

n − xn||+ ||xn − x|| (11)

≤ ||A†
n|| ∗ ||y

est − y||+ ||A†
ny− x|| (12)

||xest
n − x|| ≤ ||A†

n||δ+ ||A†
nAx− x|| (13)

lim
n→∞

||A†
n|| = ∞ (14)

||A†
nAx− x||

n→∞
−→ 0 (15)

whereδ denotes the noise level,yest the noisy data andn the number of singular values taken into
account (truncated SVD). Obviouslyn has to be chosen in a way to satisfy both stability (eq. 14) and
approximation of the solution (eq. 15). Furthermore ifδ increasesn has to be chosen smaller (n ≪ p)
and consequently the model resolution decreases.
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Figure 4:

Spectrum of singular value for calculated
kernel function of 100m loop diameter
and 100Ωm homogeneous half space re-
sistivity. The red circle marks the maxi-
mum index of singular values considered
for resolution studies.

Conclusion Based on the developed strategies we use the maximum penetration depth and a reso-
lution depth defined as110 loop diameter resolution radius to evaluate the influence ofdifferent loop
sizes from 1m to 10000m and resistivities from 1Ωm to 10000Ωm for noise free conditions, therefore
n = p can be set (Fig. 4 show the spectrum of singular value). But ithas to be remarked that this is
the best case scenario and for any other noisy case lower resolution has to be expected. Fig.5 now
illustrates the dependency of resolution from loop size andresistivity. One can see that the influence
of resistivity increases for increased loop sizes and penetration depth is strongly dependent on resis-
tivity even for small loop sizes. The functional relationship for the penetration depth normalized to
loop size appears to be quadratic. Now it can be derived that the MRS technique reaches physical
limits of penetration depths in general when considering limited space for very large loops. But since
exploration of water saturated layers is one of the basic tasks of MRS, geological relevant resistivities
of sedimentary formations have to be taken into account. In this case even large loops seem to be
limited to shallow investigations.
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Figure 5: Influence of different loop sizes and resistivities to maximum penetration and resolution
depth where relative means normalized to the loop diameter.
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