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Summary

We present a new adaptive unstructured triangular grid Finite Element approach for effectively simulating elec-
tromagnetic fields in two-dimensional anisotropic conductivity structures. This requires the elaborate generation
of huge irregular grids and their expensive administration to model nearly arbitrary geometries including surface
topography.

To characterise the diffusion of the electromagnetic fields, a second order elliptic boundary value problem
is solved. The appropriate inhomogeneous Dirichlet boundary conditions are calculated analytically for a 1D
stratified ground.

The accuracy of the Finite Element solution is mainly influenced by mesh parameters, in particular the size
of the triangles. However, fine meshes and thus large grids require great effort in computing time and memory.
Adaptively refined meshes generate fine discretisations only where necessary and therefore obtain optimum trade-
off between computational expense and quality.

Comparisons to analytical solutions and numerical calculations illustrate the robustness and flexibility of our FE
approach with respect to model geometry and topography.

1 Introduction

Numerical modelling in magnetotellurics (MT) has generally been carried out using regularly structured grids.
Finite difference (FD) methods approximate solutions on rectangular grids that discretise regions into piecewise
constant parameter structures (Jones and Price, 1970, Brewitt-Taylor and Weaver, 1976, Mackie et al., 1993).
Finite element (FE) approaches are basically not restricted to such orthogonal model geometries. Using triangles in
2D and tetrahedrons in 3D, a much more flexible outlining of structural boundaries may be achieved by employing
non-uniform grids. However, for the sake of simplicity, FE approaches were implemented on regularly structured
grids by decomposing rectangles into triangles and prisms into tetrahedrons (Coggon, 1971, Wannamaker et al.,
1987). Thus, the full power of such discretisation techniques has not unfolded so far.

We present a 2D FE algorithm for modelling electromagnetic fields using adaptive unstructured grids to dis-
cretise areas including anisotropic conductivities and surface topography. This approach benefits from all the
advantages of the FE method. Meshes are refined by an a-posteriori error estimator only where necessary optimis-
ing run time and accuracy. Our results for anisotropic models are compared to those obtained from an FE code by
Li (2000) and an FD code by Pek and Verner (1997).

2 The Boundary Value Problem

The behaviour of plane-wave time-harmonic diffusive electromagnetic fields is governed by Maxwell’s equations
in the quasi-static approximation. They lead to a second-order elliptic partial differential equation (pde) of the
general form

−∇ · (c · ∇u) + a · u = f. (1)
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Let y be the strike direction of a 2D conductivity structure and σ = σ(x, z) be the isotropic conductivity. The
coordinate system is right-handed with the z-axis pointing negative downwards. In case of dipping anisotropy the
conductivity tensor is

σ̃ =

 σxx 0 σxz

0 σyy 0
σzx 0 σzz

 . (2)

For E-Polarisation we have ~E = (0, Ey, 0)T and for H-Polarisation ~H = (0,Hy, 0)T . The following definitions
are valid for the coefficients a, c, and the right hand side f of eq. (1):

• E-polarisation: u := Ey

isotropic: c := 1,
a := iωµσ,
f := 0,

anisotropic: c := 1,
a := iωµσyy,
f := 0,

(3)

• H-polarisation: u := Hy

isotropic: c := 1/σ,
a := iωµ,
f := 0,

anisotropic: c := 1/τ

(
σxx σxz

σzx σzz

)
,

τ = σxzσzx − σxxσzz,
a := iωµ,
f := 0.

(4)

µ = µ0 = 4π · 10−7 V s · (Am)−1 is the free space magnetic permeability and ω the angular frequency of the
observed time-harmonic fields.

To solve for the unknown field components, appropriate boundary conditions need to be introduced. At the
vertical outer domain boundaries, the analytical solution for a layered halfspace is given (Wait, 1953). Li (2000)
presents a straightforward calculation of boundary conditions for arbitrarily anisotropic conductivity structures.
The field values at the horizontal upper and lower boundaries are obtained by a cubic spline interpolation.

3 The Finite Element Method

In the FE method, a piecewise linear approximation uh to the exact solution u is sought in the closed region
Ω̄ = Ω ∪ Γ with the inner part Ω and the outer boundaries Γ. Therefore we test the elliptic pde Luh = f against
all possible test functions v of that class:∫

Ω̄
(Luh − f)v dx = 0. (5)

L is an elliptical differential operator (cf. eq. (1)). uh is represented as a combination uh(x) =
∑n

i=1 UiNi(x) with
piecewise linear basis functions Ni (Fig. 1) and scalar coefficients Ui. To determine n unknowns U1, U2, ..., Un

we choose n test functions to be v = N1, N2, ..., Nn. This results in a system of linear equations

(K̃ + M̃) ~u = 0, (6)
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where the stiffness matrix K̃ and the mass matrix M̃ contain integrals in terms of the basis functions N e
i , N e

j on
triangle e, as well as the coefficients a and c defining the problem

K̃e =
∫∫

Ωe

(
(c · ∇ N e

j ) · ∇ N e
i

)
dxdy,

M̃ e =
∫∫

Ωe aN e
i N e

j dxdy
(7)

for a single element e with area Ωe. The vector ~u contains the field values Hy,i or Ey,i at each mesh point i.
Considering the correlation between the local and global numbering of the grid nodes the element matrices K̃e

and M̃ e are assembled to constitute K̃ and M̃ , respectively.
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Fig. 1: Linear basis functions N e
i (Pj) (i, j = 1, 2, 3) on triangle e, N e

i (Pj) = 1 (i = j) and N e
i (Pj) = 0 (i 6= j).

The solution ~u = ~uΩ+~uΓ is composed of field values ~uΩ at the inner points in region Ω and ~uΓ on the boundaries
Γ. The Dirichlet boundary conditions ~uΓ = ~E, ~H are considered separately. From eq. (6) we derive a system of
linear equations for ~uΩ:

(K̃ + M̃) ~uΩ = −(K̃ + M̃) ~uΓ. (8)

The quality of an FE solution can be remarkably improved by reducing the size of the grid elements. Unlike
refining a mesh globally, an adaptive refinement strategy yields an optimal mesh with even less triangles (Fig. 2).
The regions for adaptive mesh refinement are determined on the basis of an a-posteriori error estimator that consi-
ders the residual f − auh of eq. (1) on each triangle and the jump in flux ~n · c∇uh across the element edge. For
linear basis functions we have∇·c∇uh = 0. ~n is the unit normal vector of the appropriate edge. A direct solver of
the Gauß elimination type is applied to eq. (8). Jin (1993) and Monk (2003) are recommended for further reading
about FE applications in electromagnetics. Due to the complexity of an FE implementation using unstructured
grids we have utilised the MATLAB R©pde toolbox for solving partial differential equations.

4 Comparison with Analytical Solutions

We have carried out simulations for different homogeneous halfspaces at a fixed frequency and for a layered
halfspace using a set of frequencies. The results indicate that the accuracy of the calculated fields for a given grid
is mainly dependent on the skin depth. Even for an adaptively refined mesh the number of grid nodes per skin
depth is limited by the total addressable memory space (here around 300,000 triangles at 1 GB RAM).
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Fig. 2: Adaptively refined mesh for an H-Polarisation model with surface topography.
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Fig. 3: Apparent resistivity ρa (top) and phase angle φ (bottom) at the surface of a 100 Ωm (left) and a 1000 Ωm
(right) halfspace at a frequency of f = 1 kHz, E-Polarisation, adaptive mesh refinement for −5000 m≤ x ≤
5000 m, error in adaptive refined region: δρa ≤ 2.5%, δφ ≈ 0.7 degrees (left), δρa ≤ 1.5%, δφ ≈ 0.5 degrees
(right).
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In Fig. 3, the 1000 Ωm halfspace solution (right) shows higher accuracy in apparent resistivity (top) and phase
angle (bottom) than that of the 100 Ωm halfspace (left). Note, that the region of adaptive mesh refinement extends
from x = −5000 m to x = 5000 m. The electromagnetic soundings in Fig. 4 are simulated for a 100 Ωm halfspace
containing a layer of 10 Ωm between z = −200 m and z = −300 m. Again, the discrepancies at low periods are
due to the appropriate small skin depths being covered by only few grid nodes. The accuracy may be enhanced
further by adapting the model size to the frequency range.
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Fig. 4: Soundings of apparent resistivity ρa (top) and phase angle φ (bottom) over a 100 Ωm halfspace with an
embedded 10 Ωm layer between −200 m and −300 m depth, analytic ’+’ (green) and numeric ’o’ (blue) solution,
E- (left) and H- (right) Polarisation, max. error: δρa ≤ 14%, δφ ≈ 2.8 degrees (left), δρa ≤ 15%, δφ ≈ 5.4 degrees
(right).

5 Comparison with Numerical Calculations

One of the 2D COMMEMI (Comparison of modeling for Methods of Electromagnetic Induction) models was used
as an example for comparing our FE approach with an FE program by Li (2000) and with an FD code by Weaver
(1986).

Fig. 5 displays the COMMEMI model 2D-4. The apparent resistivity computed by our algorithm and the two
reference codes for this model is shown in Fig. 6 for E- and H-Polarisation on the left- and right-hand side,
respectively. The results are in good agreement.

Figs 7 and 8 present the horizontal current densities jy and jx for E- and H-Polarisation. In both cases, the
currents are focussed in the upper conductive zones and decay with depth. Some channeling occurs in the thin
2.5 Ωm layer. jy (Fig. 7) is discontinuous at horizontal conductivity contrasts whereas jx (Fig 8) is continuous.
In the right-hand diagrams large values of the imaginary parts of the current density Im(jy) (Fig. 7) and Im(jx)
(Fig. 8) reflect strong induction effects in the conductive layers.
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6 Anisotropy

Our FE approach is compared to the FD algorithm by Pek and Verner (1997) on the basis of the anisotropic dike
model depicted in Fig. 9.

Fig. 10 displays the results computed by our FE approach and the FD reference algorithm in terms of apparent
resistivity (top) and phase angle (bottom) for E- (right) and H- (left) Polarisation, respectively.

The dike structure leads to decreased apparent resistivity in both polarisation modes because all components
of the dike’s conductivity tensor are larger than the halfspace conductivity. However, the phase shows opposite
behaviour for E- and H-Polarisation. This is due to the different directions of the currents. The asymmetry
displayed in all curves is caused by the anisotropy.

Our results agree well with the values derived from the FD code. Higher deviations only occur within the dike
and on its edges. At the conductivity contrasts the conditions of continuity are required for the electromagnetic
field components. In the FE case, the mesh is generated adaptively on the basis of an error estimator. The FD grid
is set up manually. It is coarser in the region of the conductivity contrast so that we assume our result to be more
accurate.
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Fig. 5: COMMEMI model 2D-4.
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Fig. 6: Apparent resistivitiy ρa computed with our FE code ’–’, the one by Li ’+’, and the one by Weaver ’o’ for
E- (left) and H- (right) Polarisation. Deviations are about 2%.
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Fig. 7: Real (left) and imaginary (right) part of current density jy, E-Polarisation.

Fig. 8: Real (left) and imaginary (right) part of the current density jx, H-Polarisation.

7 Topography

Wannamaker et al. (1986) discussed the topographic responses of simple-structured earth’s surfaces. They applied
triangular FE meshes that result from the decomposition of rectangular grid cells. However, unstructured grids
provide the more precise discretisation of arbitrary model geometries. Exemplary, the topographic effects of a
sinusoidal (z = −∆cos(2π

λ x), ∆ = 100m and λ = 1000m) land surface are examined.
Fig. 11 shows the real part of the current density components jy and jx for E- and H-Polarisation, respectively.

In the case of jy (left diagram) large current densities occur in the conductive earth especially on top of the hills.
The lateral lack of current flow in the air results in a higher apparent resistivity and larger phases over the hills
while the extra current flow near the valleys yields negative anomalies in apparent resistivity and phase angle (Fig.
12 left). On the contrary, in the case of H-polarisation the current density jx (Fig. 11 right-hand side) displays
high values in the valleys. This leads to a decreased apparent resistivity on top of the hills. However, the phase
depends on the direction of the currents as well so that it shows the same general tendency as for E-Polarisation.
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Fig. 9: Model of an anisotropic dike located in an isotropic homogeneous halfspace.
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Fig. 10: Apparent resistivity ρa (top) and phase angle (bottom) φ for the dike model (Fig. 9) computed by the
FE (green) and the FD (blue) code at a frequency of f = 0.01 Hz, E- (left) and H-Polarisation (right), deviations:
∆ρa ≤ 6%, ∆φ < 1.6 degrees, within the dike: ∆ρa ≤ 20%, ∆φ ≤ 3.2 degrees.
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Fig. 11: Real part of current density Re(jy), E-Polarisation (left) and real part of current density Re(jx), H-
Polarisation (right), ρ0 = 1014 Ωm (air), ρ1 = 100Ωm (crust), f = 100Hz.
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Fig. 12: Apparent resistivity ρa (top) and phase angle φ (bottom), E- (left) and H- (right) Polarisation.

8 Conclusions

We have developed an FE approach for modelling plane-wave diffusive electromagnetic fields. The appropriate
boundary value problem consists of an elliptic second-order partial differential equation including inhomogeneous
Dirichlet boundary conditions. A system of linear equations results from applying the FE approximation with
linear basis functions on unstructured triangular grids. So far, direct equation solvers are sufficient to obtain the
solutions in reasonable times.
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A comparison with analytical solutions and numerical calculations has shown that our FE approach is numer-
ically robust. The use of unstructured grids is very suitable for simulating electromagnetic fields in arbitrary
model geometries especially if surface topography is involved. This seems to be very promising with regard to
bathymetric data in marine geophysics.

Adaptive mesh generation guarentees high accuracy allowing for the efficient utilisation of computer memory.
The good experience with a commercial software toolbox encourages us to continue our strategy of integrating

existing software for purely admininstrative software engineering reasons. This means cautious and controlled out-
sourcing of code generation with the aim of decreased development times, however, without loss of transparency.
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