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Abstract

Magnetotelluric directional analysis and impedance tedsoomposition are basic tools that are being stan-
dardly employed to validate a local/regional compositeteleal model of the underlying structure as well as to
extract quantitative information about both the regior@iductor, often with a specific type of symmetry, and
the local distorters. As the effect of local galvanic ditwrs can result in considerably blurring the image of the
deeper regional conductor, reliable quantitative estimaf both the decomposition parameters and their uncer-
tainties are needed. Bayesian stochastic methods areysarty suitable for this purpose, as they approach the
problem of the parameter estimation and their uncertaiméyacterization in a fully probabilistic fashion, through
the use of posterior model probabilities, rather than byviey single point estimates of the model parameters
and assessing their uncertainties via a linearized covagiprojection from the data space into the model domain.

We use the standard Groom-Bailey 3-D local/2-D regional pasite model in our bayesian approach to the
magnetotelluric decomposition. We assume that the expaitizhimpedance estimates are contamined with the
Gaussian noise and define the likelihood of a particular asite model with respect to the observed data in
terms of the least-squares misfit between the model andiexgtal impedances. We use non-informative, flat
priors over physically reasonable intervals for the stath@room-Bailey decomposition parameters. Further, we
apply two numerical variants of a Monte Carlo techniquecgjmally the Markov chain Monte Carlo procedure
based on the Gibbs sampler and a single-component adapé&t®pdlis algorithm, to simulate samples from
the posterior distribution of the composite models condid on the experimental data. From the posterior
samples, we characterize the estimates and uncertairitthe individual decomposition parameters by using
the respective marginal posterior probabilities. By amialg results of our stochastic decomposition experiments
carried out with several recently published impedance skt both synthetic and practical, we can conclude that
the stochastic scheme performs reliably for a variety of @fmdncluding the multisite and multifrequency case
with up to several hundreds of parameters. Though the MoatkGamplers are computationally very intensive,
the recent adaptive Metropolis algorithm seems to effigientrease the speed of the simulations for large-scale
problems.

1 Introduction

Magnetotelluric (MT) directional analysis and impedarexesbr decomposition have since long become standard
MT data analysis techniques that have largely extendedhplitsss of the MT interpretation of data with evidently

a 3-D character (e.g., Zhamgjal., 1987; Bahr, 1988; Groom and Bailey, 1989; Bahr, 1991; SMi&95; Jones
and Groom, 1993; Grooset al., 1993 ; Lilley, 1998a, b; McNiece and Jones, 2001). MT conitpasodels reflect
well the natural conditions in which the main distortionstih®@ MT data often come from very complex near-
surface inhomogeneities, while the deeper structure skow®ther conductivity trends and often a higher degree
of symmetry. Since the shallow inhomogeneities distortNfieimpedances in only a static way starting from a
certain period, a possibility exists to separate the staiit inductive parts of the impedance tensor by utilizing
their different frequency dynamics.

Various schemes of the MT decomposition have been suggestddhose by Bahr (1991) and Groom and
Bailey (1989) have become standards in this respect. Thepath primarily single site and single frequency
approaches that often produce largely scattered estirofties decomposition parameters if noisy data and strong
distortions are involved. Then, rather a lengthy iterapik@cedure is required to infer stable enough decomposition
results by successively correcting the composite modalpaters with respect to the data considered for a series
of neighbouring periods. Recently, McNeice and Jones (PB8te suggested a linearized multisite and multi-
frequency inverse procedure which largely stabilizes tHeddcomposition by optimizing the composite model
jointly for a series of periods and a whole array of sites.

Static distortions frequently cause the deep regionatsira to become largely blurred in the surface MT data.
As the regional parameters are of primary interest for tterjmetation, a proper characterization of the uncertain-
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ties of their estimates is of essential importance. Bayesiterence is a stochastic approach frequently used in
similar situations. The outstanding feature of the bayetgahniques is that they explicitly operate with probabil-
ity distributions related to the composite model analyzed] are thus capable of providing the most exhaustive
guantitative information on the model parameter space,(@gmanet al., 2004). Clearly, this exhaustive prob-
abilistic mapping of the model parameter domain needs amneite exploration of the parameter space, which is
often a computationally extremely intensive task.

In this contribution, we present simple Monte Carlo (MC) ggdures to analyze the distorted MT data and
conclude on both the decomposition parameter estimatethairduncertainties by simulating marginal posterior
probability density functions for the parameters. Thedtrte of the paper is as follows: In Section 2, we briefly
recall the basics of the MT distortions, MT composite modeald decomposition procedures. In Section 3, we
present a bayesian formulation of the MT decomposition leralfor the classical Groom-Bailey factorization of
a 3-D local/2-D regional composite model and summarize thanadeas on the numerical sampling procedures
used, specifically the Markov chain Monte Carlo (MCMC) methdth Gibbs sampler (Geman and Geman, 1984)
and an adaptive single-component Metropolis algorithnpgetbfrom (Haariet al., 2004). In the subsequent Sec-
tion 4, we apply our stochastic decomposition procedured@ynthetic as well as practical MT data sets presented
by McNiece and Jones (2001) in their recent multi-site, iFfrdfguency decomposition study, and discuss the per-
formance and efficiency of the stochastic approach for tHat®sets. Finally, we outline some perspectives of the
stochastic decomposition in the conclusion, Section 5.

2 MT Tensor Decomposition

2.1 3-D Local/2-D Regional Composite Model

Static distortions of the MT impedance tensor due to shaBely electrical inhomogeneities can be formally
described by .
Z°%(r,T) = A% (r) 2°5(r, T), (1)

whereA 4t (r) is a frequency independent distortion tensor, ZAtf (r, T') andZ*°¢(r, T') are, respectively, the
observed and regional impedance tensors at the locatimia periodl’. For a 2-D regional structure, the regional
impedance in the direction of the regional strike is giverahyantidiagonal tensor,

ZregQD(r,T) _ ( 7ZH0(r7T) ZE((;',T) )7 )

Two factorizations of the distortion tensor in terms of mefementary distortion factors are widely used.
Bahr’s (1991) approach expresses the distortion matrigrims of telluric deviations and anisotropic gains,

dis _ 1 tan 3 a 0
Ait(r)_(tanﬂE ].H) ( OE G,H)’ (3)

while that by Groom and Bailey (1989) factorizes it as a podd elementary distortion types, twistsheatre,

anisotropys, and gairy,
dist _ I —t L e 1+s 0
A (r)—(t 1)(e1)( 0 13)9' )

By comparing (3) and (4), a simple relation between the tivaal distortion parameters of those two factor sets
can be written immediately,
ﬁEZE-i-T, ﬂHZG_Ta
1 1 ©)
625(5E+ﬁH)7 T=§(ﬁE—5H),

with € = arctane, 7 = arctant.

2.2 Fitting the Composite Model

MT decomposition is an ambiguous task. From a single-gitglsifrequency impedance tensor, we can uniquely
recover only the regional strikg..op, the directional distortions twistand sheae, and scaled (by unknown real
factors) regional impedancegs'ed(r, T'), Zssaled(r, T'). MT decomposition leads to the solution of a system of
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eight real, non-linear algebraic equations that resuthftbe condition of fitting the experimental impedances to
those produced by the composite model,

hs.m l—et e—t
Zo}s. od(r,T) :R(@Obs—ereggD)( et 14 et ) X

0 24 (r, T)
X ( 7Z?_?aled(r’ T) 0 R(9T€g2D - HObS)a (6)

whereR(0) is a 2-D rotation matrix through.

As the near-surface distortion often mask the deep strei¢tur considerable degree, estimates of regional
parameters, and especially those of the regional sthikep, are often unstable and largely scattered if eval-
uated separately for individual frequencies within sonegjfiency range. McNeice and Jones (2001) have re-
cently suggested a procedure for stabilizing the MT decaitipa by fitting the observed impedance data by a
composite model for a whole range of periods and for multgites simultaneously. Specifically, the multi-site
multi-frequency decomposition minimizes the target

CEDONDSEND DD

i(sites) j(periods) a,8€{x,y} Pac{Re,Im}

2

Pa Z2°5 P (r;, Tj) — Pa ZSb5mod(d, vy, T) Ko

bs.ex
(SZZ”E © p(I‘i, T])

whered are the decomposition parameters, i.e., the regionakstoknmon to all sites and periods, the twist and
shear parameters common to all periods at a specific sitehamdgional impedance pairs specific for each period
and each site. In what follows, we use the normalized valug(df) /N to characterize the misfit between the
observed and model data, whéve, is the total number of the data items. If experimental (ca@mpimpedances
are available forN, periods at each oiVg sites, thenNp = 8Ny Ng. The total number of decomposition
parameters to be recovered by a decomposition procedig is 4Ny Ng +2Ng+ 1, where the three summands
are for the number of the (real) scaled regional impedameesper of twists and shears, and one common value
of the regional strike, respectively.

The problem of minimizing eq. (7) with respect to the paraersd is a standard non-linear optimization prob-
lem. McNeice and Jones (2001) use an efficient iterativequhoe based on a sequential quadratic programming
algorithm to minimize the difference between the observebraodel impedances and to obtain point estimates of
the decomposition parameters in the least-squares semgeaftitatively characterize the parameter uncertaintie
recovered from the non-linear minimization of (7), McNieared Jones (2001) use a slightly modified bootstrap
procedure of Groom and Bailey (1991) to derive the confidéimgts for the individual decomposition parameters.

3 Bayesian Approach tothe MT Decomposition

3.1 Bayesian Formulation of the MT Decomposition Problem

In a bayesian approach, both the parameter estimation arsgfessment of the parameter uncertainties are treated
as problems of determining the posterior probability ofdtbmposite model conditioned on the observed data, i.e.,
according to the Bayes rule,

Prob(Z°"s-¢xP|d, M) Prob(d|M)

Prob(d|Z°*®, M) = Prob(Z°>e, M) ’

8

(see, e.g., Gelmagt al., 2004). The posterior probability density functiBmob(d|Z°bs-¢*P M) is considered a
solution to the inverse problem (7) and is further used fal@ating point estimates for the parameters and for
deriving their confidence intervals.

In the general formula (8), the prior probabiliyrob(d|M), describes the available knowledge about the
decomposition parameters prior to the data being obseriied.symbol)/ stands for the assumptions made on
the decomposition modelpriori. In our particular decomposition problem, it represenésabsumption that we
deal with a 3-D local/2-D regional type of the composite mode

As we generally do not assume any particular knowledge abeutecomposition parametergriori, we use
flat (constant) priors on the individual parameters witl@asonable physical bounds, specifically

Oy < eregQD <6y + 900, —2< t(r,-) <2, —-1<Z 6(I‘i) <1,

10 min 10 max
0.5, | —2min <PaZppy(r;,T;) <0.5 g » 9)
T; T;
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wheref, is used to adjust limits of the regional strike range, ang., omax define wide enough limits to ac-
comodate sufficiently large impedance shifts. The lower@pykr bounds for the twist and shear correspond to
the twist and shear limit angels efarctan 63.4° and+ arctan 45°, respectively. Of course, one of the stregths
of the bayesian analysis is that more informative priorshengarameters can be introduced into (8) if additional
structural information is availabkepriori.

The other fundametal term in (8), the likelihodthob(Z°P*<*P|d, M) , represents the probability of obtaining
the observed impedances given a particular set of valughéatecomposition parameters, and can be written in
the form

1
Prob(Z°"***P|d, M) o exp [—5 (I)(d)} , (10)

if Gaussian noise distribution in the observed data is assuntHere,®(d) is the misfit defined by (7). The
likelihood function allows us to rate models according teitHit to the particular experimental data observed.
By foulding the likelihood with the prior information on thgarameters, we arrive at the parameters’ posterior
probability distribution. The denominator in (8)rob(Z°">-** M), plays just a role of a constant scaling factor
which guarantees that the posterior probability distidiuintegrates to one over the admissible parameter space
domain.

3.2 MT Decomposition via Stochastic Sampling

Analytic solutions to bayesian inference problems areaatkare mostly limited to linear statistical models in low-
dimensional settings and to simple standard probabilgjritiution functions. Most of the practical applications
of the bayesian methods, especially in higher dimensiodsadth non-linear models involved, are based either
on qualified approximations of the target probability disitions by simpler standard probability densities, like
Gaussians or their mixtures, or on generating samples fnerpasterior probability function numerically, e.g., by
Monte Carlo simulation procedures.

In our study, we have used a variant of the Monte Carlo methitid Markov chains (MCMC) to simulate
samples from the posterior probability of MT composite medenditioned on the observed impedances. Without
going into details of the MCMC technique (for details, se@,,eGelfandet al., 2004, or, within a geoelectrical
context, Grandigt al., 1999), the procedure consists in (i) constructing an eéogllrkov chain with the limit
probability distribution equal to our target posterior ipability (8), and (ii) obtaining a partial realization fratme
corresponding Markov chain. After a certain period durirfyick the chain transits to its stationary state (burn-
in period), the samples from the Markov chain realization ba considered approximate draws from our target
posterior distribution.

MCMC sampling algorithms represent general rules for thestroction and generation of the Markov chains
with the above desired properties. Here, we have first teébtedtandard Gibbs sampling procedure (e.g., Geman
and Geman, 1984; Grandital., 1999; Gelmaret al., 2004), which proceeds as follows: Starting from the latest
state of the Markov chain, sayth, with parameterd(*), the Gibbs sampler loops through all the components of
the vectord, and, for each individual componedyt, updates its value by drawing from the univariate condélon
probability density

d" = Draw{Prob(d;| "V, ... "D al) L al) M) (11)
updated values original values

After all the Np components of the parameter vector have been updated indlgj®ne iteration step of the Gibbs
sampler, and the transition to its new stdtét!), is completed.

The convergence of the MCMC procedure to the target proibalisl theoretically guaranteed for Markov
chains of infinite length only. In practice, various indimat are used to assess the convergence, the simplest being
the stability of the marginal probabilities of the modelgaeters over long enough sections of the chain. To assist
the convergence, several parallel chains can be startedvirdous points in the parameter space. Fig. 1 illustrates
the basic steps of the MCMC sampling procedure for the registnike assessment from a synthetic impedance
tensor realization treated later in Section 4.1.

After a sample from the posterior probability density fuootis obtained, basic Bayesian integrals (mean
values, covariance matrices, etc.) can be easily evaldeted the posterior sample and used to assess both
the decomposition parameters (mean values) and their taimtt@s and inter-dependencies (variance-covariance
matrix, correlations).

Since the conditional probabilities in (11) are not giveraiclosed form, they are standardly approximated
on a grid of points within the parameter domain. As the likedd function (10) has to be evaluated at each
grid point, that approximation may require extreme commutimes, especially if the direct problem solution
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Figure 1: MCMC sampling procedure illustrated on the case stochastic estimation of the regional strike for
one realization of the impedance tensor from Subsection fhithe left, the data are combined with a non-
informative, flat prior for the strike. Ten Markov chains tivseven decomposition parameters in (7), are run in
parallel starting at different points in the parameter spdde normalized misfit and the strike are shown in the top
and bottom evolution pannels, respectively, for 1000@tiens of the Gibbs sampler. After about 100 iterations
(burn-in period), the chains stabilize around a commokestralue. After 10000 iterations, the histogram for the
strikes may be considered a good approximation of the malrgitobability density function of the strike. The
histrograms to the right show that the form of the marginsirdiution of the strike is practically stable after the
first 1000 iteration steps.

is demanding, or if vast domains of the parameter space with low likelihood are sampled. In some of our
practical experiments, we have used grid steps as smalbasor the regional strike().01 for the twist and shear
parameters, an@l005 for the logarithms of the components of the regional impedanConsidering the parameter
limits specified in (9), withomin = 1072 andopa, = 10° Qm used, the number of misfit (7) evaluations totals to
more than 25 millions in such cases for one step of the Gibimplea. Coarsening the grid over areas with small
likelihood, using more sophisticated, data driven appr@tion schemes, such as the neighbourhood interpolation
suggested by Sambridge (1997), or narrowing the parameterds helps in reducing the computation burden.

As an alternative to the Gibbs sampler, we have also testéghalyg simplified version of the componentwise
adaptive Metropolis algorithm suggested recently by Haaeitrial. (2003) in the context of upper atmosphere
studies. The algorithm proceeds in similar cycles as theo&gmmpler above except that the updates to the
individual component; are generated by an adaptive Metropolis rule. For this, dipbposal draw is made from

a normal distribution centered at the current vaiﬁ“é with a data adaptive variance, specifically

proposal(k) = Draw{Normal[dZ(-k), s(varl(.k) + )|}, 12)

wherevarf.k) is the variance ol; estimated from the previous steps of the sampler, the fadsosn multiplicative
constant tuned experimentally to optimize the rejectioceéptance ratio of the algorithm (hekes= 2.4 has been
used according to the suggestion by Haatial., 2003), and: is a small regularizing factor. Then, the Metropolis

decision step is made, i.e., the candidate point is acca@(ieﬁ” = proposalg’“), with the probability

taceept) _ i )1 P1"ob(p1roposa12(,k)|dglwl)7 . ,dl(’lerl)’dgfr)P ... ,dg\]fz,) 13)
" Prob(d® Y, a®D a® L a))

If the proposal is rejected, the old value of the parameteetained, i.e.dgk“) = dgk) with the probability

1 — wlaccert) - As in this algorithm a longer history of the chain is used ddapting the variances in (12), the
chain is evidently not Markovian any more. Nonetheless ridaa al. (2003) have proved its convergence to the
target posterior. As compared to the original Gibbs samfieradaptive Metropolis procedure requires only one
solution to the direct problem per component and per it@natiThe adaptive variance in (12) should take care
of a quasi-optimality of the acceptance/rejection ratiodpdating the model parameters in the chain evolution,
regulating thus the convergence of the chain.

150



21. Kolloquium Elektromagnetische Tiefenforschung, Haus Wohldenberg, Holle, 3.-7.10.2005, Hrsg.: O. Ritter und H. Brasse

Decomposition parameters Regional impedances
10 5 | | ol e
E S E g 3 | | e E | | E
o 3 s £ 2 7 | | 'E 3 | | is
5 13 e = e | | e 1 | | i
g 3 Z = R b = I R =
5 E E 8 EL o F e et | el e g T
R T A S = £- e R 1 | IS ] | : IS
3 F g = g | | - . | | -
001 \ \ \ “ \ \ \ o \ \ — o \ \ \
0 10 20 30
— e \ | |
75 —f---meembemeeeeepeeeoand
g g 60 e
% g Tl
2 - 5- = 30 —f-------p-------t-
- : : ! ! e T e
“ i i i e \ \ \ 0 \ \ \ 0 \ \ \

0 10 20 30 0 10 20 30 0

10 20 30 0
Sample No. Sample No. Sample No.

10 20 30
Sample No.

0 5 10 15 20 25 30 35 40 45 50
Frequency of occurence

Figure 2. MT decomposition parameters from the MCMC sangphpplied individually to each of 30 noisy
realizations of the impedance tensor derived from (14).t pahels show the normalized misfit (RMS squared)
for each decomposition run, and histograms, transformiedgray-shade maps, for the regional strike, twist and
shear parameters. For comparison, point estimates oftteetlaree parameters from Bahr’s (1988) decomposition
are shown by white circles. Right panels show the approxmerginal probability densities for the recovered
regional impedances, in terms of their modules and phasesct Ealues of the parameters from the generating
impedance tensor (14) aré;..op = 0°, arctant = —2.2°, arctane = 24.95°, pg = 40.63°, oy = 20.59°.

4 Numerical Experiments

4.1 Synthetic: Multiple Realizations of a Single | mpedance Tensor

To have a possibility to compare results of our numericabexpents with a reliable reference, we have tested the
stochastic MT decomposition procedure on several datgpsesgnted lately by McNiece and Jones (2001) in their
multi-site, multi-frequency decomposition study. Theisffiexample uses a single synthetic impedance matrix

[ 126 0.44 0 4.72 + 4.05¢ _4
Z= ( 0.53 0.86 ) ( ~8.25 — 3.10i 0 > <107 Q. (14)
distortion 2—D impedance

They further generate a series of 31 realizations of thiwdexd impedance tensor by contamining its components
by Gaussian noise with the standard deviation of 4.5 % ofdhgekt impedance element. Though artificial, the
example is suitable for estimating the impact of the noistherdecomposition results under otherwise equivalent
conditions as regards the regional structure as well aota distorter.

In Figs. 2 and 3, we show results of the stochastic decompositins for the set of thirty data realizations,
which were combined in various ways to simulate differentamheposition modi. Specifically, Fig. 2 displays
results of the decomposition applied to each of the thimgsoées individually. We used the Gibbs sampler with
10k steps. The first 2k samples were used to equilibrate thim ¢burn-in period). Histograms of the individual
parameters from the remaining 8k samples were used as ap@ates to their marginal probability densities. The
relative frequencies of occurence of particular valueswesipped onto a gray-shade scale, and are shown in Fig. 2.
For comparison, point estimates of the regional strikestt@nd shear obtained by Bahr's (1988) decomposition
analysis are also indicated.

While the previous example illustrated the stochastic dgmusition approach in a setting typical for a single
site, single frequency decomposition, Fig. 3 illustratesuits of a simulation for a multiple site, multiple freqegn
case from the same data set. Now, the noisy impedance teargoasranged into five groups, with six impedance
realizations in each of them. Each group simulates a sith,astommon value of the twist and shear parameters.
Each realization within a particular group simulates oegfirency. The regional strike is assumed to have the same
value common to all the data.
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Figure 3: MT decomposition parameters form the stochaatiging applied to five groups of six realizations the
impedance tensor derived from (14). For each group, the amid shear parameters are considered constant. The
regional strike is assumed to be the same for all data. Failslen the figure structure, see caption to Fig. 2.

4.2 Synthetic: Multi-Site M ulti-Frequency Decomposition over a 2-D Block M odel

The second example adopted from McNeice and Jones (200igirsslynthetic study of distorted impedances
generated by a simple 2-D model.58 Om 2-D body, 5 km deep with a 4 km depth extent and a width of 25 km,
was embedded in B000 2m half-space. Observations were made at ten sites equispa8ekm intervals across
the surface. At each site, impedances were modelled nuafigrior 31 periods within the range 0.01 to 1000 s
and subsequently distorted by a predefined, site-specsfiortion matrix. The distorted tensors were then rotated
away from the regional strike direction (by30°), and contamined with Gaussian noise with the std correfipgn

to 2 % of the maximum impedance element at each period.

Though apparently simple and straightforward, this exanbelars some specific features that might be rather
unfavourable for the stochastic decomposition approadaist, Etochastic global optimization and sampling pro-
cedures are known to fail frequently for problems with a ¢éangimber of variables. In the model above, the total
number of decomposition parameters to be resolved is 126ithwnay be considered very large for a stochastic
approach. Especially, this number of variables practiqakvents us from using the simple Gibbs sampler within
the MCMC, as the number of solutions to the direct problemldibe prohibitively large if no coarsening strategy
for the approximation of the parameters’ conditionals ddag suggested.

Second, any componentwise sampling suffers from the pcesafrhighly correlated parameters within the set
of variables. In the present syntetic example, the 2-D neatation of the regional structure is relatively weak,
and is, moreover, obscured by excessively strong artifiigbrtions. In such a case, correlations between the
parameters of the composite model occur, with degradedimeaince of the sampling procedure as a consequence.

We used the componentwise adaptive Metropolis algorithniagrioet al. (2003) to perform the MCMC
sampling for the above model. We have met serious difficultiesampling for the sites individually, especially
because of strong correlations between the decomposkgi@mgeters. For the whole set consisting of all 10 sites
and all 31 frequencies, the procedure behaved much mortarggiinan for the sites considered individually, and
produced satisfactory results after about 100k iteratmfrthe adaptive Metropolis algorithm. For comparison,
we present our results for the strike, twist and shear essnimgether with those published by McNiece and
Jones (2001) in Table 1.

4.3 Practical: MT-DIW2 Papua-New Guinea MT Data Set

Here we present a few illustrative results of the analysthefPapua New Guinea data (PNG, Jones and Schultz,
1997), which were a subject of detailed investigations iwithe MT-DIW?2 project, and have been studied exten-
sively by McNeice and Jones (2001) from the point of view & tlirectional and decomposition analysis. From
the latter analysis, this data set has been shown to indicadasistent regional structure for a series of eight sites,
called PNG101 through PNG108.
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Site True twist  True sheat MNJ twist MNJ twist| ACM twist ACM shear
SYNOO1 —20 20 —20.1 20.1 | —20.0£0.1 19.94+0.1
SYNO0O02 40 —10 40.2 —10.1 39.9+0.1 —-10.240.1
SYNO0O03 —15 25 —15.1 25.2 | —15.24+0.2 25.0+0.1
SYNO0O0O4 20 40 19.7 39.9 19.94+0.2 40.0 £0.2
SYNOO5 —40 —25 —40.0 —25.0 | —=40.0£0.1 —-25.0%+0.1
SYNOO6 30 —20 30.1 —20.2 299+0.1 -20.0£0.1
SYNO0O7 —-50 —35 —50.1 -349 | —=50.1+0.2 -352+0.1
SYNO0O08 —10 25 —10.1 —25.1 | —10.3+0.2 25.0+0.1
SYNO009 -5 35 —-5.3 35.1 —5.14+0.2 35.1+0.1
SYNO10 45 15 45.1 14.8 44.94+0.1 15.0£+0.1

Table 1: Strike and twist parameters, in degrees, for thé¢hsyic data produced by the 2-D conductive block
in Section 4.2. True parameters were used to distort 2-D dimpees of the box model. MNJ are results of
the reverse decomposition presented by McNeice and Jo84)2ACM parameters are results of the adaptive
componentwise Metropolis sampling used in this paper. f®@cbmmon regional strike, we has@® for the true
strike,30.3° from the MNJ analysis, angD.1 + 0.2° from the stochastic procedure.

To compare the performance of our algorithm with the optatian procedure by McNeice and Jones (2001)
for a set of field data, we have used the PNG data set withintoahastic decomposition analysis. Here, we will
only show a fraction of the results concerning the regiotri{es estimates. The results were obtained by using
the Gibbs sampler within the MCMC procedure, typically witbk iterations and 2k steps of a burn-in phase.
The results are summarized in Fig. 4, and can be comparectidivgith the estimates given in McNeice and
Jones (2001), Figures 11 through 13.

The strike estimates were obtained by applying the stoichdstomposition to various combinations of the
PNG data items. First, the single strike, single frequeregodhposition was carried out. The partial strike his-
tograms at individual frequencies were then merged intnglsihistogram to show the aggregate directional
information for the region at individual frequencies (tagvrof histograms in Fig. 4). Obviously, for whole fre-
guency ranges, this directional information is rather poud excessively diffuse.

By assuming the same regional strike for all the eight sitesiclered at individual frequencies, a multiple site,
single frequency diretional analysis clearly improvesrisolution with respect to the regional strike (middle row
of histograms in Fig. 4). Further sharpening of the deeptivaal image is achieved by aggregating the data over
frequency ranges, as demonstrated by histograms in thenbtitte in Fig. 4.

5 Conclusion

The MT decomposition is a problem that targets not only thrapaters of the underlying composite model, but
is interested in their uncertainties as well. Relativelyalvenanifestation of the deep symmetric regional structure
and its masking by static distortions, sometimes extrerfieear-surface origin may result in excessively blurred
images of the deep conductors. By aggregating the data @egréncy bands and groups of sites presents a way of
effectively focusing on poorly resolvable features of thgional structure, as shown by McNeice and Jones (2001)
in their multi-site, multi-frequency decomposition study

Technically, the decomposition is an optimization progediiming at the minimization of the objective func-
tion (7). In the above study by McNiece and Jones (2001), ectiminimization procedure is used to solve the
decomposition problem. If converged, it provides poinineates of the decomposition parameters for the optimal
composite model. The error estimates for these parametarBecthen obtained by either a linearized projection
of the data covariance matrix into the parameter space (@emke, 1989), or, if non-linearities are essential, by a
stochastic search in a neighbourhood of the optimal modély studying changes in the composite model due to
stochastic variations of the data, e.g., by using a boggtracedure as in Groom and Bailey (1991) and McNeice
and Jones (2001).

We present an alternative multi-site, multi-frequencyateposition procedure that is based on the bayesian
formulation of the decomposition problem and its solutiéena stochastic sampling by a MCMC technique. The
procedure generates a chain that approximates samplestfegmosterior probability distribution of the MT com-
posite model conditioned on the observed data. Though ctatipoally demanding, the advantage of the proce-
dure is that, by providing the results in the form of a posteéprobability distribution, the uncertainty informatio
on the decomposition parameters is an inseparable compaoinée solution.

This paper is just a feasibility study that compares thegrarénce of the stochastic decomposition with the
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Figure 4: Marginal probability densities for the regiontike from the PNG101 through PNG108 data set (Jones
and Schultz, 1997). Top row—Sum of strikes estimated fosttess and periods separately. Middle row—Strikes
obtained from a multi-site, single frequency decompositipplied to all eight sites jointly. Bottom rows—Strikes
from a multi-site, multi-frequency decomposition overeitiht sites and over period bands of, respectively, half a
decade and one decade width.

results presented by McNeice and Jones (2001). The coropar@arried out above show that the bayesian av-
eraging from the MCMC samples provides estimates to therdposition parameters statistically equivalent to

those obtained from the direct optimization procedure.fidence intervals for the individual parameters are im-

mediately available at the output of the MCMC sampling. ThHeN¥C procedure could be used with success even
in the unfavourable case of a 2-D box model, with a large nurabeariables and strong correlations between the
parameters. In this case, however, the computational désrmaannot compete with those of the direct minimiza-
tion. Nonetheless, if a bootstrap error testing should Ippleimented for that model, the amount of computations
required would undoubtedly rocket as well.

The presented bayesian analysis allows us to relativelfyeagend the scope of problems that have to be
addressed in relation to the MT decomposition. E.g., theegdization to the model that considers also sta-
tic magnetic distortions (Chave and Smith, 1994; McNeice dones, 2001) is straightforward. Moreover, the
bayesian model selection is a suitable tool to answer thetigumeof whether incorporating the magnetic distor-
tions into the composite model is really required by the dAteother problem not addressed here is that of poorly
estimated data variances in (7), which is not a rare casesictipe, and affects even the PNG data set used here
(for details, see McNeice and Jones, 2001). Bayesian apiproakes it possible to include the data variances into
the parameter set as nuisance variables (e.g., Gedtrain 2004), and thus allows us to cope with defficiencies
originating from the data proceesing.
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