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Abstract

Magnetotelluric directional analysis and impedance tensor decomposition are basic tools that are being stan-
dardly employed to validate a local/regional composite electrical model of the underlying structure as well as to
extract quantitative information about both the regional conductor, often with a specific type of symmetry, and
the local distorters. As the effect of local galvanic distortions can result in considerably blurring the image of the
deeper regional conductor, reliable quantitative estimates of both the decomposition parameters and their uncer-
tainties are needed. Bayesian stochastic methods are particularly suitable for this purpose, as they approach the
problem of the parameter estimation and their uncertainty characterization in a fully probabilistic fashion, through
the use of posterior model probabilities, rather than by deriving single point estimates of the model parameters
and assessing their uncertainties via a linearized covariance projection from the data space into the model domain.

We use the standard Groom-Bailey 3-D local/2-D regional composite model in our bayesian approach to the
magnetotelluric decomposition. We assume that the experimental impedance estimates are contamined with the
Gaussian noise and define the likelihood of a particular composite model with respect to the observed data in
terms of the least-squares misfit between the model and experimental impedances. We use non-informative, flat
priors over physically reasonable intervals for the standard Groom-Bailey decomposition parameters. Further, we
apply two numerical variants of a Monte Carlo technique, specifically the Markov chain Monte Carlo procedure
based on the Gibbs sampler and a single-component adaptive Metropolis algorithm, to simulate samples from
the posterior distribution of the composite models conditioned on the experimental data. From the posterior
samples, we characterize the estimates and uncertainties of the individual decomposition parameters by using
the respective marginal posterior probabilities. By analyzing results of our stochastic decomposition experiments
carried out with several recently published impedance datasets, both synthetic and practical, we can conclude that
the stochastic scheme performs reliably for a variety of models, including the multisite and multifrequency case
with up to several hundreds of parameters. Though the Monte Carlo samplers are computationally very intensive,
the recent adaptive Metropolis algorithm seems to efficiently increase the speed of the simulations for large-scale
problems.

1 Introduction

Magnetotelluric (MT) directional analysis and impedance tensor decomposition have since long become standard
MT data analysis techniques that have largely extended possibilities of the MT interpretation of data with evidently
a 3-D character (e.g., Zhanget al., 1987; Bahr, 1988; Groom and Bailey, 1989; Bahr, 1991; Smith, 1995; Jones
and Groom, 1993; Groomet al., 1993 ; Lilley, 1998a, b; McNiece and Jones, 2001). MT composite models reflect
well the natural conditions in which the main distortions tothe MT data often come from very complex near-
surface inhomogeneities, while the deeper structure showssmoother conductivity trends and often a higher degree
of symmetry. Since the shallow inhomogeneities distort theMT impedances in only a static way starting from a
certain period, a possibility exists to separate the staticand inductive parts of the impedance tensor by utilizing
their different frequency dynamics.

Various schemes of the MT decomposition have been suggested, and those by Bahr (1991) and Groom and
Bailey (1989) have become standards in this respect. They are both primarily single site and single frequency
approaches that often produce largely scattered estimatesof the decomposition parameters if noisy data and strong
distortions are involved. Then, rather a lengthy iterativeprocedure is required to infer stable enough decomposition
results by successively correcting the composite model parameters with respect to the data considered for a series
of neighbouring periods. Recently, McNeice and Jones (2001) have suggested a linearized multisite and multi-
frequency inverse procedure which largely stabilizes the MT decomposition by optimizing the composite model
jointly for a series of periods and a whole array of sites.

Static distortions frequently cause the deep regional structure to become largely blurred in the surface MT data.
As the regional parameters are of primary interest for the interpretation, a proper characterization of the uncertain-
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ties of their estimates is of essential importance. Bayesian inference is a stochastic approach frequently used in
similar situations. The outstanding feature of the bayesian techniques is that they explicitly operate with probabil-
ity distributions related to the composite model analyzed,and are thus capable of providing the most exhaustive
quantitative information on the model parameter space (e.g., Gelmanet al., 2004). Clearly, this exhaustive prob-
abilistic mapping of the model parameter domain needs an extensive exploration of the parameter space, which is
often a computationally extremely intensive task.

In this contribution, we present simple Monte Carlo (MC) procedures to analyze the distorted MT data and
conclude on both the decomposition parameter estimates andtheir uncertainties by simulating marginal posterior
probability density functions for the parameters. The structure of the paper is as follows: In Section 2, we briefly
recall the basics of the MT distortions, MT composite modelsand decomposition procedures. In Section 3, we
present a bayesian formulation of the MT decomposition problem for the classical Groom-Bailey factorization of
a 3-D local/2-D regional composite model and summarize the main ideas on the numerical sampling procedures
used, specifically the Markov chain Monte Carlo (MCMC) method with Gibbs sampler (Geman and Geman, 1984)
and an adaptive single-component Metropolis algorithm adopted from (Haarioet al., 2004). In the subsequent Sec-
tion 4, we apply our stochastic decomposition procedure to the synthetic as well as practical MT data sets presented
by McNiece and Jones (2001) in their recent multi-site, multi-frequency decomposition study, and discuss the per-
formance and efficiency of the stochastic approach for thosedata sets. Finally, we outline some perspectives of the
stochastic decomposition in the conclusion, Section 5.

2 MT Tensor Decomposition

2.1 3-D Local/2-D Regional Composite Model

Static distortions of the MT impedance tensor due to shallow3-D electrical inhomogeneities can be formally
described by

Z
obs(r, T ) = A

dist(r)Zreg(r, T ), (1)

whereAdist(r) is a frequency independent distortion tensor, andZ
obs(r, T ) andZ

reg(r, T ) are, respectively, the
observed and regional impedance tensors at the locationr and periodT . For a 2-D regional structure, the regional
impedance in the direction of the regional strike is given byan antidiagonal tensor,

Z
reg2D(r, T ) =

(
0 ZE(r, T )

−ZH(r, T ) 0

)

, (2)

Two factorizations of the distortion tensor in terms of moreelementary distortion factors are widely used.
Bahr’s (1991) approach expresses the distortion matrix in terms of telluric deviations and anisotropic gains,

A
dist(r) =

(
1 tanβH

tanβE 1

) (
aE 0
0 aH

)

, (3)

while that by Groom and Bailey (1989) factorizes it as a product of elementary distortion types, twistt, sheare,
anisotropys, and gaing,

A
dist(r) =

(
1 −t
t 1

) (
1 e
e 1

) (
1 + s 0

0 1 − s

)

g. (4)

By comparing (3) and (4), a simple relation between the directional distortion parameters of those two factor sets
can be written immediately,

βE = ǫ + τ, βH = ǫ − τ,

ǫ =
1

2
(βE + βH), τ =

1

2
(βE − βH),

(5)

with ǫ = arctan e, τ = arctan t.

2.2 Fitting the Composite Model

MT decomposition is an ambiguous task. From a single-site single-frequency impedance tensor, we can uniquely
recover only the regional strikeθreg2D, the directional distortions twistt and sheare, and scaled (by unknown real
factors) regional impedancesZscaled

E (r, T ), Zscaled
H (r, T ). MT decomposition leads to the solution of a system of
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eight real, non-linear algebraic equations that result from the condition of fitting the experimental impedances to
those produced by the composite model,

Z
obs.mod(r, T ) = R(θobs − θreg2D)

(
1 − et e − t
e + t 1 + et

)

×

×

(
0 Zscaled

E (r, T )
−Zscaled

H (r, T ) 0

)

R(θreg2D − θobs), (6)

whereR(θ) is a 2-D rotation matrix throughθ.
As the near-surface distortion often mask the deep structure to a considerable degree, estimates of regional

parameters, and especially those of the regional strikeθreg2D, are often unstable and largely scattered if eval-
uated separately for individual frequencies within some frequency range. McNeice and Jones (2001) have re-
cently suggested a procedure for stabilizing the MT decomposition by fitting the observed impedance data by a
composite model for a whole range of periods and for multiplesites simultaneously. Specifically, the multi-site
multi-frequency decomposition minimizes the target

Φ(d) =
∑

i(sites)

∑

j(periods)

∑

α,β∈{x,y}

∑

Pa∈{Re,Im}

[

PaZobs.exp
α,β (ri, Tj) − PaZobs.mod

α,β (d, ri, Tj)

δZobs.exp
α,β (ri, Tj)

]2

, (7)

whered are the decomposition parameters, i.e., the regional strike common to all sites and periods, the twist and
shear parameters common to all periods at a specific site, andthe regional impedance pairs specific for each period
and each site. In what follows, we use the normalized value ofΦ(d)/ND to characterize the misfit between the
observed and model data, whereND is the total number of the data items. If experimental (complex) impedances
are available forNT periods at each ofNS sites, thenND = 8NT NS . The total number of decomposition
parameters to be recovered by a decomposition procedure isNP = 4NT NS +2NS +1, where the three summands
are for the number of the (real) scaled regional impedances,number of twists and shears, and one common value
of the regional strike, respectively.

The problem of minimizing eq. (7) with respect to the parametersd is a standard non-linear optimization prob-
lem. McNeice and Jones (2001) use an efficient iterative procedure based on a sequential quadratic programming
algorithm to minimize the difference between the observed and model impedances and to obtain point estimates of
the decomposition parameters in the least-squares sense. To quantitatively characterize the parameter uncertainties
recovered from the non-linear minimization of (7), McNieceand Jones (2001) use a slightly modified bootstrap
procedure of Groom and Bailey (1991) to derive the confidencelimits for the individual decomposition parameters.

3 Bayesian Approach to the MT Decomposition

3.1 Bayesian Formulation of the MT Decomposition Problem

In a bayesian approach, both the parameter estimation and the assessment of the parameter uncertainties are treated
as problems of determining the posterior probability of thecomposite model conditioned on the observed data, i.e.,
according to the Bayes rule,

Prob(d|Zobs.exp, M) =
Prob(Zobs.exp|d, M) Prob(d|M)

Prob(Zobs.exp, M)
, (8)

(see, e.g., Gelmanet al., 2004). The posterior probability density functionProb(d|Zobs.exp, M) is considered a
solution to the inverse problem (7) and is further used for evaluating point estimates for the parameters and for
deriving their confidence intervals.

In the general formula (8), the prior probability,Prob(d|M), describes the available knowledge about the
decomposition parameters prior to the data being observed.The symbolM stands for the assumptions made on
the decomposition modela priori. In our particular decomposition problem, it represents the assumption that we
deal with a 3-D local/2-D regional type of the composite model.

As we generally do not assume any particular knowledge aboutthe decomposition parametersa priori, we use
flat (constant) priors on the individual parameters within reasonable physical bounds, specifically

θ0 ≤ θreg2D ≤ θ0 + 90◦, −2 ≤ t(ri) ≤ 2, −1 ≤ e(ri) ≤ 1,

0.5

√

10̺min

Tj

≤ PaZE,H(ri, Tj) ≤ 0.5

√

10̺max

Tj

, (9)
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whereθ0 is used to adjust limits of the regional strike range, and̺min, ̺max define wide enough limits to ac-
comodate sufficiently large impedance shifts. The lower andupper bounds for the twist and shear correspond to
the twist and shear limit angels of± arctan63.4◦ and± arctan45◦, respectively. Of course, one of the stregths
of the bayesian analysis is that more informative priors on the parameters can be introduced into (8) if additional
structural information is availablea priori.

The other fundametal term in (8), the likelihood,Prob(Zobs.exp|d, M) , represents the probability of obtaining
the observed impedances given a particular set of values forthe decomposition parameters, and can be written in
the form

Prob(Zobs.exp|d, M) ∝ exp

[

−
1

2
Φ(d)

]

, (10)

if Gaussian noise distribution in the observed data is assumed. Here,Φ(d) is the misfit defined by (7). The
likelihood function allows us to rate models according to their fit to the particular experimental data observed.
By foulding the likelihood with the prior information on theparameters, we arrive at the parameters’ posterior
probability distribution. The denominator in (8),Prob(Zobs.exp, M), plays just a role of a constant scaling factor
which guarantees that the posterior probability distribution integrates to one over the admissible parameter space
domain.

3.2 MT Decomposition via Stochastic Sampling

Analytic solutions to bayesian inference problems are rareand are mostly limited to linear statistical models in low-
dimensional settings and to simple standard probability distribution functions. Most of the practical applications
of the bayesian methods, especially in higher dimensions and with non-linear models involved, are based either
on qualified approximations of the target probability distributions by simpler standard probability densities, like
Gaussians or their mixtures, or on generating samples from the posterior probability function numerically, e.g., by
Monte Carlo simulation procedures.

In our study, we have used a variant of the Monte Carlo method with Markov chains (MCMC) to simulate
samples from the posterior probability of MT composite models conditioned on the observed impedances. Without
going into details of the MCMC technique (for details, see, e.g., Gelfandet al., 2004, or, within a geoelectrical
context, Grandiset al., 1999), the procedure consists in (i) constructing an ergodic Markov chain with the limit
probability distribution equal to our target posterior probability (8), and (ii) obtaining a partial realization fromthe
corresponding Markov chain. After a certain period during which the chain transits to its stationary state (burn-
in period), the samples from the Markov chain realization can be considered approximate draws from our target
posterior distribution.

MCMC sampling algorithms represent general rules for the construction and generation of the Markov chains
with the above desired properties. Here, we have first testedthe standard Gibbs sampling procedure (e.g., Geman
and Geman, 1984; Grandiset al., 1999; Gelmanet al., 2004), which proceeds as follows: Starting from the latest
state of the Markov chain, sayk-th, with parametersd(k), the Gibbs sampler loops through all the components of
the vectord, and, for each individual componentdi, updates its value by drawing from the univariate conditional
probability density

d
(k+1)
i = Draw{Prob(di| d

(k+1)
1 , . . . , d

(k+1)
i−1

︸ ︷︷ ︸

updated values

, d
(k)
i+1, . . . , d

(k)
NP

︸ ︷︷ ︸

original values

, M)}. (11)

After all theNP components of the parameter vector have been updated in thisway, one iteration step of the Gibbs
sampler, and the transition to its new stated

(k+1), is completed.
The convergence of the MCMC procedure to the target probability is theoretically guaranteed for Markov

chains of infinite length only. In practice, various indicators are used to assess the convergence, the simplest being
the stability of the marginal probabilities of the model parameters over long enough sections of the chain. To assist
the convergence, several parallel chains can be started from various points in the parameter space. Fig. 1 illustrates
the basic steps of the MCMC sampling procedure for the regional strike assessment from a synthetic impedance
tensor realization treated later in Section 4.1.

After a sample from the posterior probability density function is obtained, basic Bayesian integrals (mean
values, covariance matrices, etc.) can be easily evaluatedfrom the posterior sample and used to assess both
the decomposition parameters (mean values) and their uncertainties and inter-dependencies (variance-covariance
matrix, correlations).

Since the conditional probabilities in (11) are not given ina closed form, they are standardly approximated
on a grid of points within the parameter domain. As the likelihood function (10) has to be evaluated at each
grid point, that approximation may require extreme computing times, especially if the direct problem solution
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Figure 1: MCMC sampling procedure illustrated on the case ofa stochastic estimation of the regional strike for
one realization of the impedance tensor from Subsection 4.1. In the left, the data are combined with a non-
informative, flat prior for the strike. Ten Markov chains, with seven decomposition parameters in (7), are run in
parallel starting at different points in the parameter space. The normalized misfit and the strike are shown in the top
and bottom evolution pannels, respectively, for 10000 iterations of the Gibbs sampler. After about 100 iterations
(burn-in period), the chains stabilize around a common strike value. After 10000 iterations, the histogram for the
strikes may be considered a good approximation of the marginal probability density function of the strike. The
histrograms to the right show that the form of the marginal distribution of the strike is practically stable after the
first 1000 iteration steps.

is demanding, or if vast domains of the parameter space with very low likelihood are sampled. In some of our
practical experiments, we have used grid steps as small as0.5◦ for the regional strike,0.01 for the twist and shear
parameters, and0.005 for the logarithms of the components of the regional impedances. Considering the parameter
limits specified in (9), with̺ min = 10−2 and̺max = 105 Ωm used, the number of misfit (7) evaluations totals to
more than 25 millions in such cases for one step of the Gibbs sampler. Coarsening the grid over areas with small
likelihood, using more sophisticated, data driven approximation schemes, such as the neighbourhood interpolation
suggested by Sambridge (1997), or narrowing the parameter bounds helps in reducing the computation burden.

As an alternative to the Gibbs sampler, we have also tested a slightly simplified version of the componentwise
adaptive Metropolis algorithm suggested recently by Haario et al. (2003) in the context of upper atmosphere
studies. The algorithm proceeds in similar cycles as the Gibbs sampler above except that the updates to the
individual componentdi are generated by an adaptive Metropolis rule. For this, firsta proposal draw is made from
a normal distribution centered at the current valued

(k)
i with a data adaptive variance, specifically

proposal
(k)
i = Draw{Normal[d

(k)
i , s(var

(k)
i + ε)]}, (12)

wherevar
(k)
i is the variance ofdi estimated from the previous steps of the sampler, the factors is an multiplicative

constant tuned experimentally to optimize the rejection/acceptance ratio of the algorithm (here,s = 2.4 has been
used according to the suggestion by Haarioet al., 2003), andε is a small regularizing factor. Then, the Metropolis
decision step is made, i.e., the candidate point is accepted, d(k+1)

i = proposal
(k)
i , with the probability

π(accept) = min

{

1,
Prob(proposal

(k)
i | d

(k+1)
1 , . . . , d

(k+1)
i−1 , d

(k)
i+1, . . . , d

(k)
NP

)

Prob(d
(k)
i | d

(k+1)
1 , . . . , d

(k+1)
i−1 , d

(k)
i+1, . . . , d

(k)
NP

)

}

. (13)

If the proposal is rejected, the old value of the parameter isretained, i.e.,d(k+1)
i = d

(k)
i with the probability

1 − π(accept). As in this algorithm a longer history of the chain is used foradapting the variances in (12), the
chain is evidently not Markovian any more. Nonetheless, Haario et al. (2003) have proved its convergence to the
target posterior. As compared to the original Gibbs sampler, the adaptive Metropolis procedure requires only one
solution to the direct problem per component and per iteration. The adaptive variance in (12) should take care
of a quasi-optimality of the acceptance/rejection ratio for updating the model parameters in the chain evolution,
regulating thus the convergence of the chain.
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Figure 2: MT decomposition parameters from the MCMC sampling applied individually to each of 30 noisy
realizations of the impedance tensor derived from (14). Left panels show the normalized misfit (RMS squared)
for each decomposition run, and histograms, transformed into gray-shade maps, for the regional strike, twist and
shear parameters. For comparison, point estimates of the latter three parameters from Bahr’s (1988) decomposition
are shown by white circles. Right panels show the approximate marginal probability densities for the recovered
regional impedances, in terms of their modules and phases. Exact values of the parameters from the generating
impedance tensor (14) are:ϑreg2D = 0◦, arctan t = −2.2◦, arctan e = 24.95◦, ϕE = 40.63◦, ϕH = 20.59◦.

4 Numerical Experiments

4.1 Synthetic: Multiple Realizations of a Single Impedance Tensor

To have a possibility to compare results of our numerical experiments with a reliable reference, we have tested the
stochastic MT decomposition procedure on several data setspresented lately by McNiece and Jones (2001) in their
multi-site, multi-frequency decomposition study. Their first example uses a single synthetic impedance matrix

Z =

(
1.26 0.44
0.53 0.86

)

︸ ︷︷ ︸

distortion

(
0 4.72 + 4.05i

−8.25 − 3.10i 0

)

× 10−4

︸ ︷︷ ︸

2−D impedance

Ω. (14)

They further generate a series of 31 realizations of this distorted impedance tensor by contamining its components
by Gaussian noise with the standard deviation of 4.5 % of the largest impedance element. Though artificial, the
example is suitable for estimating the impact of the noise onthe decomposition results under otherwise equivalent
conditions as regards the regional structure as well as the local distorter.

In Figs. 2 and 3, we show results of the stochastic decomposition runs for the set of thirty data realizations,
which were combined in various ways to simulate different decomposition modi. Specifically, Fig. 2 displays
results of the decomposition applied to each of the thirty tensors individually. We used the Gibbs sampler with
10k steps. The first 2k samples were used to equilibrate the chain (burn-in period). Histograms of the individual
parameters from the remaining 8k samples were used as approximates to their marginal probability densities. The
relative frequencies of occurence of particular values were mapped onto a gray-shade scale, and are shown in Fig. 2.
For comparison, point estimates of the regional strike, twist and shear obtained by Bahr’s (1988) decomposition
analysis are also indicated.

While the previous example illustrated the stochastic decomposition approach in a setting typical for a single
site, single frequency decomposition, Fig. 3 illustrates results of a simulation for a multiple site, multiple frequency
case from the same data set. Now, the noisy impedance tensorsare arranged into five groups, with six impedance
realizations in each of them. Each group simulates a site, with a common value of the twist and shear parameters.
Each realization within a particular group simulates one frequency. The regional strike is assumed to have the same
value common to all the data.
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Figure 3: MT decomposition parameters form the stochastic sampling applied to five groups of six realizations the
impedance tensor derived from (14). For each group, the twist and shear parameters are considered constant. The
regional strike is assumed to be the same for all data. For details on the figure structure, see caption to Fig. 2.

4.2 Synthetic: Multi-Site Multi-Frequency Decomposition over a 2-D Block Model

The second example adopted from McNeice and Jones (2001) is their synthetic study of distorted impedances
generated by a simple 2-D model. A50 Ωm 2-D body, 5 km deep with a 4 km depth extent and a width of 25 km,
was embedded in a1000 Ωm half-space. Observations were made at ten sites equispaced at 8 km intervals across
the surface. At each site, impedances were modelled numerically for 31 periods within the range 0.01 to 1000 s
and subsequently distorted by a predefined, site-specific distortion matrix. The distorted tensors were then rotated
away from the regional strike direction (by−30◦), and contamined with Gaussian noise with the std corresponding
to 2 % of the maximum impedance element at each period.

Though apparently simple and straightforward, this example bears some specific features that might be rather
unfavourable for the stochastic decomposition approach. First, stochastic global optimization and sampling pro-
cedures are known to fail frequently for problems with a large number of variables. In the model above, the total
number of decomposition parameters to be resolved is 1261, which may be considered very large for a stochastic
approach. Especially, this number of variables practically prevents us from using the simple Gibbs sampler within
the MCMC, as the number of solutions to the direct problem would be prohibitively large if no coarsening strategy
for the approximation of the parameters’ conditionals could be suggested.

Second, any componentwise sampling suffers from the presence of highly correlated parameters within the set
of variables. In the present syntetic example, the 2-D manifestation of the regional structure is relatively weak,
and is, moreover, obscured by excessively strong artificialdistortions. In such a case, correlations between the
parameters of the composite model occur, with degraded performance of the sampling procedure as a consequence.

We used the componentwise adaptive Metropolis algorithm byHaarioet al. (2003) to perform the MCMC
sampling for the above model. We have met serious difficulties in sampling for the sites individually, especially
because of strong correlations between the decomposition parameters. For the whole set consisting of all 10 sites
and all 31 frequencies, the procedure behaved much more regularly than for the sites considered individually, and
produced satisfactory results after about 100k iterationsof the adaptive Metropolis algorithm. For comparison,
we present our results for the strike, twist and shear estimates together with those published by McNiece and
Jones (2001) in Table 1.

4.3 Practical: MT-DIW2 Papua-New Guinea MT Data Set

Here we present a few illustrative results of the analysis ofthe Papua New Guinea data (PNG, Jones and Schultz,
1997), which were a subject of detailed investigations within the MT-DIW2 project, and have been studied exten-
sively by McNeice and Jones (2001) from the point of view of the directional and decomposition analysis. From
the latter analysis, this data set has been shown to indicatea consistent regional structure for a series of eight sites,
called PNG101 through PNG108.
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Site True twist True shear MNJ twist MNJ twist ACM twist ACM shear
SYN001 −20 20 −20.1 20.1 −20.0± 0.1 19.9 ± 0.1
SYN002 40 −10 40.2 −10.1 39.9 ± 0.1 −10.2 ± 0.1
SYN003 −15 25 −15.1 25.2 −15.2± 0.2 25.0 ± 0.1
SYN004 20 40 19.7 39.9 19.9 ± 0.2 40.0 ± 0.2
SYN005 −40 −25 −40.0 −25.0 −40.0± 0.1 −25.0 ± 0.1
SYN006 30 −20 30.1 −20.2 29.9 ± 0.1 −20.0 ± 0.1
SYN007 −50 −35 −50.1 −34.9 −50.1± 0.2 −35.2 ± 0.1
SYN008 −10 25 −10.1 −25.1 −10.3± 0.2 25.0 ± 0.1
SYN009 −5 35 −5.3 35.1 −5.1 ± 0.2 35.1 ± 0.1
SYN010 45 15 45.1 14.8 44.9 ± 0.1 15.0 ± 0.1

Table 1: Strike and twist parameters, in degrees, for the synthetic data produced by the 2-D conductive block
in Section 4.2. True parameters were used to distort 2-D impedances of the box model. MNJ are results of
the reverse decomposition presented by McNeice and Jones (2001). ACM parameters are results of the adaptive
componentwise Metropolis sampling used in this paper. For the common regional strike, we have30◦ for the true
strike,30.3◦ from the MNJ analysis, and30.1 ± 0.2◦ from the stochastic procedure.

To compare the performance of our algorithm with the optimization procedure by McNeice and Jones (2001)
for a set of field data, we have used the PNG data set within our stochastic decomposition analysis. Here, we will
only show a fraction of the results concerning the regional strike estimates. The results were obtained by using
the Gibbs sampler within the MCMC procedure, typically with10k iterations and 2k steps of a burn-in phase.
The results are summarized in Fig. 4, and can be compared directly with the estimates given in McNeice and
Jones (2001), Figures 11 through 13.

The strike estimates were obtained by applying the stochastic decomposition to various combinations of the
PNG data items. First, the single strike, single frequency decomposition was carried out. The partial strike his-
tograms at individual frequencies were then merged into a single histogram to show the aggregate directional
information for the region at individual frequencies (top row of histograms in Fig. 4). Obviously, for whole fre-
quency ranges, this directional information is rather poorand excessively diffuse.

By assuming the same regional strike for all the eight sites considered at individual frequencies, a multiple site,
single frequency diretional analysis clearly improves theresolution with respect to the regional strike (middle row
of histograms in Fig. 4). Further sharpening of the deep directional image is achieved by aggregating the data over
frequency ranges, as demonstrated by histograms in the bottom line in Fig. 4.

5 Conclusion

The MT decomposition is a problem that targets not only the parameters of the underlying composite model, but
is interested in their uncertainties as well. Relatively weak manifestation of the deep symmetric regional structure
and its masking by static distortions, sometimes extreme, of near-surface origin may result in excessively blurred
images of the deep conductors. By aggregating the data over frequency bands and groups of sites presents a way of
effectively focusing on poorly resolvable features of the regional structure, as shown by McNeice and Jones (2001)
in their multi-site, multi-frequency decomposition study.

Technically, the decomposition is an optimization procedure aiming at the minimization of the objective func-
tion (7). In the above study by McNiece and Jones (2001), a direct minimization procedure is used to solve the
decomposition problem. If converged, it provides point estimates of the decomposition parameters for the optimal
composite model. The error estimates for these parameters can be then obtained by either a linearized projection
of the data covariance matrix into the parameter space (e.g., Menke, 1989), or, if non-linearities are essential, by a
stochastic search in a neighbourhood of the optimal model, or by studying changes in the composite model due to
stochastic variations of the data, e.g., by using a bootstrap procedure as in Groom and Bailey (1991) and McNeice
and Jones (2001).

We present an alternative multi-site, multi-frequency decomposition procedure that is based on the bayesian
formulation of the decomposition problem and its solution via a stochastic sampling by a MCMC technique. The
procedure generates a chain that approximates samples fromthe posterior probability distribution of the MT com-
posite model conditioned on the observed data. Though computationally demanding, the advantage of the proce-
dure is that, by providing the results in the form of a posteriori probability distribution, the uncertainty information
on the decomposition parameters is an inseparable component of the solution.

This paper is just a feasibility study that compares the performance of the stochastic decomposition with the
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Figure 4: Marginal probability densities for the regional strike from the PNG101 through PNG108 data set (Jones
and Schultz, 1997). Top row—Sum of strikes estimated for thesites and periods separately. Middle row—Strikes
obtained from a multi-site, single frequency decomposition applied to all eight sites jointly. Bottom rows—Strikes
from a multi-site, multi-frequency decomposition over alleight sites and over period bands of, respectively, half a
decade and one decade width.

results presented by McNeice and Jones (2001). The comparisons carried out above show that the bayesian av-
eraging from the MCMC samples provides estimates to the decomposition parameters statistically equivalent to
those obtained from the direct optimization procedure. Confidence intervals for the individual parameters are im-
mediately available at the output of the MCMC sampling. The MCMC procedure could be used with success even
in the unfavourable case of a 2-D box model, with a large number of variables and strong correlations between the
parameters. In this case, however, the computational demands cannot compete with those of the direct minimiza-
tion. Nonetheless, if a bootstrap error testing should be supplemented for that model, the amount of computations
required would undoubtedly rocket as well.

The presented bayesian analysis allows us to relatively easily extend the scope of problems that have to be
addressed in relation to the MT decomposition. E.g., the generalization to the model that considers also sta-
tic magnetic distortions (Chave and Smith, 1994; McNeice and Jones, 2001) is straightforward. Moreover, the
bayesian model selection is a suitable tool to answer the question of whether incorporating the magnetic distor-
tions into the composite model is really required by the data. Another problem not addressed here is that of poorly
estimated data variances in (7), which is not a rare case in practice, and affects even the PNG data set used here
(for details, see McNeice and Jones, 2001). Bayesian approach makes it possible to include the data variances into
the parameter set as nuisance variables (e.g., Gelmanet al., 2004), and thus allows us to cope with defficiencies
originating from the data proceesing.
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