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Abstract

We present a 2D damped least-squares inversion approach for plane wave methods using an adaptive unstruc-
tured grid finite element forward operator. The development of an efficient inversion scheme to interpret two-
dimensional (2D) magnetotelluric (MT) and very low frequency (VLF) data sets needs the elaborate calculation of
the sensitivity matrix that contains the partial derivatives of the data with respect to the inversion model parameters.
The perturbation method that determines the sensitivity matrix row-wise requires (m + 1)nf forward computa-
tions, where m is the number of model parameters and nf the number of frequencies. The same numerical effort
arises for another procedure called the sensitivity equation method that provides one linear system of equations
for each row of the Jacobian matrix. However, it can be reduced to (n+ 1)nf forward calculations where n is the
number of observation points. This method uses a modified equation system obtained from the derivative of the
finite element equations with respect to the model parameters.

For the forward calculations we use an adaptive unstructured grid finite element algorithm that allows for effi-
cient discretisation of arbitrary 2D model geometries. However, the inversion model is parameterised on a coarser
grid, for which the sensitivities are determined. Due to the small number of degrees of freedom the numerical
effort is relatively low. So far, the procedure is implemented for inversion of E-polarisation data sets which is
particularly relevant to the VLF method, however, the approach for inversion of H-polarisation will follow analo-
gously without large effort. We show that the inversion process converges and gives reasonable results for simple
cases. Concluding, we obtain a two-grid technique which has proved to be numerically efficient.

Introduction

Data inversion is a mathematical approach to fit the physical response computed for a parameter model to the
observed data. In the last decades, inversion approaches have been developed by various researchers for 1D, 2D
and 3D MT data (Jupp & Vozoff, 1975; deGroot-Hedlin & Constable, 1990; Smith & Booker, 1991; Mackie &
Madden, 1993; Siripunvaraporn & Egbert, 2000; Rodi & Mackie, 2001). 1D MT data inversions are too simple to
cope with a complex earth. However, 3D MT data inversions are very time consuming and large computer memory
is required to solve the problem. In cases, where the assumption of 2D subsurface structures is valid, 2D inversion
approaches serve as a rapid and numerically inexpensive alternative to obtain significant models.

A good review of inversion schemes is presented by Günther (2004). Among other methods, the Gauss-Newton
or least-squares method is well known to minimise an appropriate objective function. Levenberg (1944) introduced
the use of a Lagrange parameter to the Gauss-Newton approach. The method is described in detail by Marquardt
(1963) and since then has been known as the Marquardt-Levenberg Method. Some researchers have referred it as
damped least-squares method (Oristaglio & Worthington, 1980; Raiche et al., 1985) or ridge regression method
(Inman, 1975). The damped least-squares method serves as a hybrid between the steepest descent and the Gauss-
Newton methods (Lines & Treitel, 1984).

All the inversion schemes based on the minimisation of an objective function require the computation of the
Jacobian or sensitivity matrix which consists of the partial derivatives of the observed data with respect to the
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inversion model parameters. The perturbation or brute-force, the sensitivity-equation and the adjoint-equation
method can be applied for the calculation of the sensitivity matrix (Rodi, 1976; McGillivray & Oldenburg, 1990;
McGillivray et al., 1994; Farquharson & Oldenburg, 1996).

We have focussed on a discrete inversion approach of 2D MT data using the modified sensitivity-equation
method (Rodi, 1976) for calculating the Jacobian. The region of interest is parameterised in rectangular blocks
with piecewise constant electrical conductivities. The size of the rectangular blocks remains unchanged during the
inversion process. Only the conductivities of the rectangular blocks vary to get an appropriate fitting of the com-
puted to the observed data. We calculate the forward response on the basis of an adaptive unstructured grid finite
element approach. Hence, we apply different parameterisation and discretisation schemes for forward modelling
and inversion. All the codes are developed using MATLAB R©.

Forward Modelling

The propagation of electromagnetic fields is governed by Maxwell’s equations. In the case of plane-wave, dif-
fusive, time-harmonic electromagnetic fields in 2D conductivity structures they can be combined to yield two
decoupled equations of induction

∂2Ey
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+
∂2Ey

∂2z2
− iωµσEy = 0, (1)
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− iωµHy = 0 (2)

forE-polarisation andH-polarisation, respectively, in a right-handed Cartesian coordinate system with the positive
z-axis pointing upwards. Ey is the electric field and Hy is the magnetic field. y denotes the strike direction. ω, µ,
i, and σ are angular frequency, magnetic permeability, imaginary unit, and electrical conductivity, respectively. To
solve for the unknown fields, inhomogeneous Dirichlet boundary conditions are applied that assign the field values
for a horizontally layered half-space at the boundaries.

The forward computations are carried out by an adaptive unstructured triangular grid finite element (FE) algo-
rithm (Franke et al., 2004). An adaptive mesh refinement is applied to get sufficiently fine meshes at conductivity
contrasts. Additionally, the grid gets coarser towards greater depths and towards the boundaries due to a geomet-
rical criterion that limits the adaptive refinement to the central region of the model. Adaptive mesh refinement
redistributes the nodes of a uniform mesh in regions where a large number of nodes are required to guarantee a
proper sampling of steep spatial field variations.

The FE discretisation leads to a system of equations that can be expressed in matrix-vector form as(
K̃ + M̃

)
~u = 0, (3)

where ~u is the column vector of the electric field values Ey and the magnetic field values Hy at each node in
E-polarisation and H-polarisation, respectively. K̃ and M̃ are referred to as stiffness and mass matrix.

The remaining field components Hx, Hz for E-polarisation and Ex, Ez for H-polarisation can be determined
at each grid node by

Hx =
1
iωµ

∂Ey

∂z
, Hz = − 1

iωµ

∂Ey

∂x
,

Ex = − 1
σ

∂Hy

∂z
, Ez =

1
σ

∂Hy

∂x
. (4)
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The apparent resistivity ρa and the phase φ can be computed

for E-polarisation as

ρa =
1
ωµ

∣∣∣∣Ey

Hx
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(
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)
(5)

and for H-polarisation as

ρa =
1
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∣∣∣∣Ex

Hy
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)
. (6)

Inversion procedure

We apply the damped least-squares method for minimisation of the objective function ψ given by

ψ =
(
∆~d− S∆~p

)T (
∆~d− S∆~p

)
+ λ

(
∆~pT ∆~p− p2

0

)
, (7)

where ∆~d = (~dobs − ~dcomp) denotes the discrepancy vector. ~dobs represents the observed data and ~dcomp is the
computed data for the assumed model. S and ∆~p denote the sensitivity matrix and the model parameter update,
respectively. The logarithmised conductivities are considered as model parameters. The Lagrange parameter λ is
introduced to constrain the energy of the model parameter update to a finite quantity p2

0. To get the minimum of
the objective function ψ, its partial derivatives ∂ψ/∂∆pj are required to be zero corresponding to all j. Therefore,
deriving eq. (7) partially with respect to ∆pj and setting it to zero gives

STS∆~p+ λ∆~p = ST ∆~d, (8)

which can be rearranged to solve for the model parameter updates as

∆~p =
(
STS + λI

)−1
ST ∆~d. (9)

As appears in eq. (9), the Lagrange parameter λ prevents STS from being singular. It also damps large oscillat-
ing changes in the model parameters which may lead to unstable solutions during inversion process.

Logarithmic values of apparent resistivity and the phase in radian are used as data which assures both to have
similar numerical values. The use of the logarithm of conductivities as model parameter prevents them to become
negative during inversion. However, it may become unrealistically large when the solution starts to diverge.

The model parameters are updated by

pnew
j = pold

j e∆pj . (10)

Equation (9) has been solved iteratively applying a direct solver and model parameters are updated by eq. (10)
after each iteration. We have applied three criteria to stop the iteration: (1) by defining the maximum number of
iterations, (2) if the change in the error measure from one iteration to the next is less than 0.01% , and (3) when
χ2 ≈ 1.

The root mean square (RMS) error and χ2-value can be calculated by

RMS =

√√√√ n∑
i=1

(
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i

)2
n

, χ2 =
1
n

n∑
i=1

(
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i − dcomp
i

)2
ε2i

, (11)

where εi is the standard deviation of the error in the data. The χ2-criteria is well accepted due to the fact that
noise in MT data is assumed as normally distributed. If the amount of noise is known in the observed data then the
χ2-criteria stops the inversion before the noise is fitted (Whittall & Oldenburg, 1992).
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There remains the open problem to select an appropriate value of the Lagrange parameter λ. The L-curve and
generalised cross validation (GCV) criterion can be used for the selection of proper starting λ-value. We have
observed that the maximum singular value of STS proves to be sufficient as the starting value for λ.

To get fast convergence, λ is decreased by a factor of less than one (e.g. 0.5) in each iteration. Whenever the
solution starts to diverge i.e. the RMS error in the current iteration is more than the RMS error in the previous
iteration, λ is increased again to make the solution stable. The introduction of λ in this fashion allows resolving
of prominent model parameters (having largest singular values) first and model parameters with smaller singular
values later.

We need to investigate the behaviour of the convergence to find an appropriate factor to decrease λ in each
iteration. If the χ2-value converges very fast or the solution starts to diverge before reaching the χ2-criterion then
a larger factor is required to decrease λ so that we get χ2 ≈ 1 in the last iteration before stopping the inversion
process.

Sensitivity calculation

Here, we show how to determine the sensitivities forE-polarisation. In principle, the sensitivities may be computed
by three methods: (1) the brute-force method, (2) the sensitivity-equation method, and (3) the adjoint-equation
method.

For m model parameters, n observation locations, and nf frequencies, the brute-force and the sensitivity-
equation methods require (m+1)nf forward computations whereas the adjoint-equation method requires (n+1)nf

forward computations.
Rodi (1976) has presented the efficient use of the sensitivity-equation method to compute sensitivities in a

modified form depending on whether there are more observation points than model parameters or vice versa.
The modified sensitivity-equation method requires (n + 1)nf forward computations. Therefore, one of these
sensitivity-equation methods can be used to calculate sensitivities depending on the actual number of parameters
and observation sites. We have used the modified sensitivity-equation method for the calculation of the sensi-
tivities. The same approach is used by Rodi and Mackie (2001) and Siripunvaraporn and Egbert (2000) for MT
inversion and by Zhang et al. (1995) for DC resistivity inversion. Expressions for sensitivities of logarithmised
apparent resistivity Slnρa

ij and phase Sφ
ij for the ith observation site and jth model parameter can be computed by

evaluating a complex quantity Sij as

Slnρa

ij = 2Re(Sij) , Sφ
ij = Im(Sij), (12)

where Sij will be expressed according to Farquharson and Oldenburg (1996) as

Sij =
1
Ey

∂Ey

∂σj
− 1
Hx

∂Hx

∂σj
. (13)

The electric field Ey and the magnetic field Hx at the ith observation site can be computed from ~u by forming two
column vectors ~ai and ~bi as

Ey = ~ai
T~u , Hx = ~bi

T
~u. (14)

~ai is formed by simply keeping 1 at the position of the ith datum and zeros at all other nodes. ~bi is designed to
perform also a numerical differentiation over ~u according to eq. (4) and gives Hx value at the ith observation site
when used according to eq. (14). If the observation site is not located excatly at the discretised grid node then it is
interpolated by two nearby grid nodes.

Now inserting the values of Ey and Hx into eq. (13) and using eq. (3) gives

Sij =

(
1

~ai
T~u

~ai −
1

~bi
T
~u

~bi

)T (
K̃ + M̃

)−1
(
−∂M̃
∂σj

)
~u, (15)
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Since (K̃+M̃) is a symmetric matrix, a vector vi can be introduced so that ~vi
T = ( 1

~ai
T ~u
~ai− 1

~bi
T

~u

~bi)T (K̃+M̃)−1.

~vi
T is evaluated by solving a modified forward problem as

(
K̃ + M̃

)
~vi =

(
1

~ai
T~u

~ai −
1

~bi
T
~u

~bi

)
. (16)

~u is solved from eq. (3) and the value of −∂M̃/∂σj can be calculated easily without much effort, hence, all the
parameters are known to solve eq. (15). Therefore, a total of n+1 forward computations are required to be solved
for each frequency to calculate the sensitivities. One forward computaion is required to solve eq. (3) for ~u and n
forward computations are required to solve eq. (16) corresponding to n observation sites. The values of Sij are
used to compute the desired sensitivities Slnρa

ij and Sφ
ij according to eq. (12).

Results and discussion

We present inversion results of an E-polarisation data set. The synthetic data are calculated for an assumed model
and Gaussian noise is added to the synthetic data.

Synthetic Model

We consider a simple model (Fig. 1 left) for testing the performance of our inversion code. The model consists
of an anomalous region having a conductivity of 0.1 S/m and a size of 300 m × 150 m within a 0.01 S/m half-
space. The forward response is calculated at 9 different locations (arrows in Fig. 1 right)) ranging from −1000 m
to 1000 m with 250 m spacing for frequencies 1000 Hz, 500 Hz and 100 Hz. 5 % Gaussian noise is added to the
apparent resistivity and an equivalent of 1.5 ◦ is added to the phase data.

Figure 1: Synthetic model of a buried rectangular 0.1 S/m body (300 m× 150 m) within a half-space of 0.01 S/m
for generating the synthetic data (left). The region considered for parameterisation to perform the inversion
(right). Observation sites are marked by arrows.

Inversion results

We select a region as shown in Fig. 1 (right) for parameterisation to perform the inversion. The region is param-
eterised in rectangular blocks. The size of the blocks is fixed in the x-direction and increases by a factor of 1.5
in the z-direction. Two differently parameterised models with half-spaces of 0.01 S/m conductivity are assumed
as starting models to test the inversion approach for different parameterisations. The first starting model for the
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inversion is parameterised in such a manner that the anomalous region accomodates exactly in the parameterised
region. Basic block size is considered as 100 m×100 m for parameterisation. Minimisation stops after 5 iterations
when χ2 ≈ 1 (Fig. 2). The λ-value is decreased by a factor of 0.6 in each iteration. Fig. 3 depicts that inversion
of the synthetic data is able to resolve the anomalous region and the conductivities of this region are also close to
their true values. The fitting between observed and computed data is good as shown in Fig. 4.

Figure 2: Convergence of RMS error and χ2-value during the iteration. Minimisation is stopped when χ2 ≈ 1.

Figure 3: Model obtained from inversion using a 0.01 S/m half-space as starting model. Parameterisation acco-
modates the anomalous region exactly (covered by dashed lines).
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Figure 4: Fitting between observed and computed apparent resistivity and phase data. Symbols represent observed
data and solid lines represent computed data.

The second starting model for the inversion uses the same half-space. However, the parameterisation is finer
compared to the previous one and does not coincide with the outline of the perturbing body. Basic block size is
considered as 50 m × 20 m for parameterisation. Minimisation stops after 5 iterations (Fig. 5). The λ-value is
decreased by a factor of 0.5 in each iteration. The inverted model shows that the inversion result is close to the
assumed model but some of the blocks in the upper corners of the anomalous region of the inverted model are not
well resolved (Fig. 6). This may be due to the disagreement of the parameterisations and the higher degree of
ill-posedness due to the larger number of parameters. However, the fitting is good for all frequencies (Fig. 7).

Figure 5: Convergence of RMS error and χ2-value during the iteration for the second model. Minimisation is
stopped when χ2 ≈ 1.
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Figure 6: Model obtained after inversion. The starting model is a half-space of conductivity 0.01 S/m. Parameter-
isation is finer than the one used for the previous starting model and not able to accomodate the anomalous
region exactly (covered by dashed lines).

Figure 7: Fitting between observed and computed apparent resistivity and phase data for the second model. Sym-
bols represent observed data and solid lines represent computed data.

Conclusion

This is the first step in the development of a new 2D inversion approach. We have shown that the algorithm works
in principle. The elements of the sensitivity matrix are calculated by the modified sensitivity equation method
which is efficient when the number of observation points is smaller than the number of model parameters.

Different discretisation and parameterisation schemes are used in forward modelling and inversion. The forward
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simulation is done applying an adaptive unstructured triangular grid finite element algorithm that enables us to
model nearly any 2D conductivity structure including surface topography. However, the inversion is carried out by
parameterising the region of interest in rectangular blocks. This has to be considered as a first test of operational
reliability. We will enhance the parameterisation to include topography in the inverse process as well and to exploit
the full power of the forward operator. Mapping between forward modelling grid and parameterisation grid of the
inverse model will thus become an important issue of our future research.

References

deGroot-Hedlin, C., & Constable, S. (1990). Occam inversion to generate smooth, two-dimensional models for
magnetotelluric data. Geophysics, 55, 1613-1624.

Farquharson, C. G., & Oldenburg, D. W. (1996). Approximate sensitivities for the electromagnetic inverse prob-
lem. Geophys. J. Int., 126, 235-252.

Franke, A., Börner, R.-U., & Spitzer, K. (2004). 2d finite element modelling of plane-wave diffusive time-
harmonic electromagnetic fields using adaptive unstructured grids: Extended abstract. 17th Workshop on
Electromagnetic Induction in the Earth, Hyderabad, India. www-document. http://www.emindia2004.org.,
S.2-O.01, 1-6.

Günther, T. (2004). Inversion methods and resolution analysis for the 2d/3d reconstruction of resistivity structures
from dc measurements. Unpublished doctoral dissertation, TU Begakademie Freiberg, Freiberg, Germany.

Inman, J. R. (1975). Resistivity inversion with ridge regression. Geophysics, 40, 798-817.
Jupp, D. L. B., & Vozoff, K. (1975). Stable iterative methods for the inversion of geophysical data. Geophys. J. R.

astr. Soc., 42, 957-976.
Levenberg, K. (1944). A method for the solution of certain nonlinear problems in least squares. Quarter. Appl.

Mathemat., 2, 164-168.
Lines, L. R., & Treitel, S. (1984). Tutorial: A review of least-squares inversion and its application to geophysical

problems. Geophys. Prospect., 32, 159-186.
Mackie, R. L., & Madden, T. R. (1993). Three-dimensional magnetotelluric inversion using conjugate gradients.

Geophys. J. Int., 115, 215-229.
Marquardt, D. W. (1963). An algorithm for least squares estimation of non-linear parameters. J. Soc. Indus. Appl.

Mathemat., 11, 431-441.
McGillivray, P. R., & Oldenburg, D. W. (1990). Methods for calculating frechet derivatives and sensitivities for

the non-linear inverse problem: a comparative study. Geophys. Prospect., 38, 499-524.
McGillivray, P. R., Oldenburg, D. W., Ellis, R. G., & Habashy, T. M. (1994). Calculation of sensitivities for the

frequency-domain electromagnetic problem. Geophys. J. Int., 116, 1-4.
Oristaglio, M. L., & Worthington, M. H. (1980). Inversion of surface and borehole electromagnetic data for

two-dimensional electromagnetic conductivity models. Geophys. Prospect., 28, 633-657.
Raiche, A. P., Jupp, D. L. B., Rutter, H., & Vozoff, K. (1985). The joint use of coincident loop transient electro-

magnetic and schlumberger sounding to resolve layered structures. Geophysics, 50, 1618-1627.
Rodi, W. L. (1976). A technique for improving the accuracy of finite element solutions for magnetotelluric data.

Geophys. J. R. astr. Soc., 44, 483-506.
Rodi, W. L., & Mackie, R. L. (2001). Nonlinear conjugate gradient algorithm for 2-d magnetotelluric inversion.

Geophysics, 66, 174-187.
Siripunvaraporn, W., & Egbert, G. (2000). An efficient data-subsurface inversion method for 2-d magnetotelluric

data. Geophysics, 65, 791-803.
Smith, J. T., & Booker, J. R. (1991). Rapid inversion of two-and three-dimensional magnetotelluric data. J.

geophys. Res., 96, 3905-3922.
Whittall, K. P., & Oldenburg, D. W. (1992). Inversion of magnetotelluric data for a one-dimensional conductivity:

Geophysical monograph series. Soc. Expl. Geophys., Tulsa, OK.
Zhang, J., Mackie, R. L., & Madden, T. R. (1995). 3-d resistivity forward modelling and inversion using conjugate

gradients. Geophysics, 60, 1313-1325.

172

21. Kolloquium Elektromagnetische Tiefenforschung, Haus Wohldenberg, Holle, 3.-7.10.2005, Hrsg.: O. Ritter und H. Brasse


	References

