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1. Introduction
1.1 Definition of the 1D transfer function
For a 1D conductivity structure with ẑ pointing downwards, E(z, ω) = Ex(z, ω)x̂ and a time factor
exp(+iωt) we use Schmucker’s magnetotelluric transfer function

C(ω) := +
Ex(0, ω)

iωBy(0, ω)
= −Ex(0, ω)

E′x(0, ω)
. (1)

Its relation to impedance Z and apparent resistivity %a is

Z(ω) = iωµ0C(ω), %a(ω) = ωµ0|C(ω)|2. (2)

C(ω) has the dimension of a length. In the non-dispersive case its real part is the ‘center of gravity’
of the induced currents.

1.2 Representation of C(ω) for a non-dispersive 1D conductivity structure
Necessary and sufficient that given data C(ω) belong to a non-dispersive 1D conductivity structure
is that C(ω) can be represented as

C(ω) = a0 +
∫ ∞

0

a(λ) dλ

λ + iω
, a0 ≥ 0, a(λ) ≥ 0 (3)

(Weidelt 1972, Parker 1980, Yee & Paulson 1988). Here

a(λ) is a generalized function to include both the continuous and discrete part of the spectrum
of decay constants. which correspond on the positive imaginary ω-axis to branch cuts and poles,
respectively. a(λ) is given by

a(λ) = − 1
π

lim
ε→o+

=[C(iλ + ε)]. (4)

At poles, a(λ) ≥ 0 means that the residua are positive. Two simple examples are

• Uniform half-space of conductivity σ:

C(ω) =
1√

iωµ0σ
=

1
π
√

µ0σ

∫ ∞

0

dλ√
λ(λ + iω)

• Layer of conductivity σ and thickness D underlain by a perfect conductor:

C(ω) =
1√

iωµ0σ
tanh(

√
iωµ0σD) =

2
µ0σD

∞∑
n=1

1
λn + iω

, λn =
π2(n− 1/2)2

µ0σD2
.
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In this contribution we investigate the question whether the spectral presentation is changed when
a dispersive conductivity σ̃(ω) is assumed. Only if the form (3) is retained, there would exist an
equivalent non-dispersive 1D model fitting dispersive data. It should be noted, however, that even
in the case that the form (3) is not retained, for a finite set of data resulting from a dispersive
model (e.g. only one frequency), an equivalent non-dispersive model may be found. However,
fitting problems will arise when the data density increases.

2. A simple example of a dispersive conductivity structure
2.1 The conductivity model
We assume a simple conductivity model, consisting of a dispersive surface layer 0 ≤ z ≤ D with
the Cole-Cole conductivity model

σ̃(ω) = σ∞

[
1− m

1 + (iωτ)c

]
(5)

underlain by a perfect conductor (see Fig. 1). For formal simplicity, the conventional time constant
τc [ = τ% in Ageev & Svetov (1999) ] has been replaced by τ := (1−m)1/cτc [ =τσ in Ageev & Svetov
(1999) ]. Then C(ω) is given by

C(ω) =
1
k

tanh(kD) with k2 = iωµ0σ̃(ω) (6)

At present, the frequency exponent c is subject to the only condition c ≥ 0. The polarizability m
satisfies 0 ≤ m < 1. – Conductivity dispersion by displacement currents will be discussed in Sect. 5.

2.2 The position of poles and zeroes of C(ω)
The zeroes of C(ω) lie at frequencies where sinh kD = 0, i.e. at

k2D2 = iωµ0σ̃(ω)D2 = −n2π2, n = 1, 2, . . . (7)

and the poles occur where cosh kD = 0, i.e. at

k2D2 = iωµ0σ̃(ω)D2 = −(n− 1/2)2π2, n = 1, 2, . . . (8)

As necessary conditions at zeroes and poles therefore hold

<[iωσ̃(ω)] < 0 and =[iωσ̃(ω)] = 0 (9)

Before considering the general case in the next section, we will confine our attention here to two
simple special cases:

a) m = 0: Non-dispersive conductivity
Zeroes and poles lie on the positive imaginary frequency axis at

ωn =
iπ2

µ0σ∞D2
·
{

n2 for the n-th zero
(n− 1/2)2 for the n-th pole

(10)

For D →∞ the poles and zeroes cluster, such that a branch cut is required from ω = +0i to
ω = ∞i and C(ω) = 1/k.

b) 0 < m < 1 and c = 1: Simple Debye-dispersion
In this case

σ̃(ω) = σ∞

[
1− m

1 + iωτ

]
. (11)
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Fig. 1: Position of poles and zeroes of the magnetotelluric transfer function C(ω) for c = 1.
The circle has its center at ωτ = i and its radius is

√
m. The longest electromagnetic

decay time is τem/4. The parameter p represents the ratio of IP time constant τ and
electromagnetic decay time. For p → 0 (uniform halfspace) poles and zeroes cluster and
have to be replaced by a branch cut.

Let

αn :=
π2τ

µ0σ∞D2
·
{

n2 for the n-th zero
(n− 1/2)2 for the n-th pole

(12)

Then the zeroes and poles lie at

ωnτ =


(i/2)[ 1−m + αn ∓

√
(1−m + αn)2 − 4αn ], 0 ≤ αn ≤ (1−

√
m)2

(i/2)[ 1−m + αn ± i
√

4αn − (1−m + αn)2 ], (1−
√

m)2 ≤ αn ≤ (1 +
√

m)2

(i/2)[ 1−m + αn ±
√

(1−m + αn)2 − 4αn ], αn ≥ (1 +
√

m)2.
(13)

In the dispersive case, each αn gives rise to two poles or zeroes. The singular curves con-
sist of the positive imaginary axes-sections 0 ≤ =ωτ ≤ 1 − m and 1 ≤ =ωτ < ∞ and the
circle |ωτ − i| =

√
m, see Fig. 1. In the first line of (13) the minus refers to poles and

zeroes on the section 0 ≤ =ωτ ≤ 1 −
√

m outside the circle and the plus to the section
1−

√
m ≤ =ωτ ≤ 1−m inside the circle. Similarly, in the third line the plus gives poles and

zeroes on the section 1 +
√

m ≤ =ωτ < ∞ outside the circle and the minus poles and zeroes
on the section 1 ≤ =ωτ ≤ 1 +

√
m inside the circle with a clustering at its center ωτ = i.

In the limit m → 0 we have for poles and zeroes outside the circle ωnτ → iαn, in agree-
ment with (10). All poles and zeroes inside the circle tend to the ωτ = i. In a Mittag-Leffler
reconstruction of C(ω) from the poles they are entering with zero weight (vanishing residuum).
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The poles and zeroes of Eq. (13), displayed in Fig. 1, show that in general poles and zeroes
outside the positive imaginary axis occur, which precludes the existence of an equivalent
non-dispersive conductivity model. In the case that α1 > (1 +

√
m)2 or

π2τ

µ0σ∞D2
> 4(1 +

√
m)2,

it follows from (13) that all poles of C(ω) are positioned on the positive imaginary axis, as in
the non-dispersive case. However, the residua belonging to the poles inside the circle on the
line 1 ≤ =ωτ ≤ 1+

√
m turn out to be negative. Therefore also in this case no non-dispersive

model exists.

3. Poles and zeroes in the general case
The singular lines satisfying the necessary conditions (9) are shown in Fig. 2 for several values of
the frequency exponent c. In addition branch cuts exist for c 6= 1. The spread between the left
and right line for c < 1 infinitely increases in the limit =ωτ → ∞. (This also holds for c = 0.95.)
For the (perhaps unphysical) values c > 1 the circle at c = 1 disintegrates into two arcs with
two well-defined endpoints at the points, where σ̃(ω) either grows to infinity or vanishes, i.e where
1 + (iωτ)c = 0 or 1 + (iωτ)c = m. Poles and zeroes cluster at the former point (marked by a heavy
dot). It is easily found that both endpoints have the azimuth ϕ = ±π/c−π/2, with the azimuth ϕ
counted from the positive real frequency axis. With increasing c the singular lines migrate towards
the real frequency axis, such that C(ω) becomes increasingly singular there. The limiting value
c0(m) of c with its singular line just touching the real frequency axis is determined by the condition
that according to (9) the equation =[iωσ̃(ω)] = 0 or equivalently <[σ̃(ω)] = 0 has exactly one real
(positive) solution. This gives

c0(m) = 1 + (4/π) tan−1
√

1−m. (14)

Examples: c0(0.1) = 1.97, c0(0.3) = 1.89, c0(0.5) = 1.78, c0(0.7) = 1.64, c0(0.9) = 1.39. For
c ≥ c0(m) the singularities are no longer confined to the upper frequency half-plane and therefore
we are no longer facing a causal system.

For any choice of p = τ/τem the poles and zeroes of C(ω) are located on the full lines. The actual
position is obtained after specifying p. An example is shown in Fig. 3. Displayed is the sign of the
spectral function defined according to (4). For c < 1 it is negative and for c > 1 it is positive. In
the case of complex poles also the residua are complex. Therefore only the real part is shown by
circles, which have an area proportional to the real part. The essentially positive nature of C(ω) is
carried for c < 1 by the poles and for c > 1 by the branch cut. The affinity between the ‘circle’ for
c = 1 and the ‘arcs’ for c = 1.05 is illustrated by the negative signs of the residua at the ends of
the arc, which result from the negative residua inside the circle for c = 1. – The greatest frequency
exponent c = 1.78 is associated with two arcs touching the real frequency axis.

For p → 0 the sequence the of poles (and zeroes) forms a dense line (branch cut). In this case only
the endpoints (branch points) are fixed, which means that – for instance – the endpoints of the
arcs can be connected by a straight line. This case is considered in more detail in the next section.
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4. Dispersive uniform half-space
Special attention requires the case D →∞, the limiting model of a uniform dispersive half-space.
As already mentioned, in the corresponding limit p → 0 the density of poles (and zeroes) increases –
see Figs. 1 and 3 – and ultimately they form a continuous line = branch cut; branch cuts, however,
can be deformed in the complex plane. For 0 ≤ c ≤ 1 the branch cuts off the positive imaginary
axis, originating at ω = 0, can unified with the already existing branch cut along this line. For
1 < c ≤ 2 Fig. 3 shows two circular arc off the positive imaginary axis with the endpoints

ωτ = (1−m)1/c exp{iπ(±1/c− 1/2)} and ωτ = exp{iπ(±1/c− 1/2)}

respectively (+ and − refer to <ω > 0 and <ω < 0). These endpoints can be connected by a
straight branch cuts, such that also in the range c0 < c ≤ 2 all singularities and zeroes are situated
in the upper ω-plane (whereas for D < ∞ the restriction c ≤ c0 holds). The absence of singularities
and zeroes in the lower frequency plane is the necessary condition for the existence of dispersion
relations connecting apparent resistivity %a(ω) and phase ϕ(ω) = arg(Z(ω)), see (2). The existence
of branch cuts away from the positive imaginary axis, however, prohibits a non-dispersive 1D in-
terpretation of the dispersive response for 1 < c ≤ 2.

The response function is

C(ω) =
1√

iωµ0σ̃(ω)

with σ̃(ω) given in (5). For 0 ≤ c ≤ 1 it admits the spectral presentation (3), where a0 = 0 and
a(λ) given according to (4) by

a(λ) =
1

π
√

λµ0σ∞
· <

{
1− m

1 + (λτ)c exp(iπc)

}−1/2

,

A simple analysis reveals that a(λ) ≥ 0. Therefore there exists an equivalent non-dispersive 1D
model completely explaining the dispersive data. In particular, for the simple case c = 1 we obtain

a(λ) =
1

π
√

λµ0σ∞
·


√

(1− λτ)/(1−m− λτ), 0 ≤ λτ < 1−m,
0, 1−m < λτ < 1,√

(λτ − 1)/(λτ + m− 1), λτ > 1

No closed form of the associated non-dispersive conductivity distribution was found, but the first
terms of a series presentation in the non-dimensional variable x := µ0σ∞z2/τ can be given:

σ(z)
σ∞

= 1−2mx+
m(9m + 2)x2

3
−4m(45m2 + 27m + 1)x3

45
+

m(1575m3 + 1728m2 + 243m + 2)x4

315
−· · ·

Fig. 4 shows apparent resistivity and phase for four values of c. The first two admit even a non-
dispersive 1D interpretation. For c > c0 (not displayed) the phase can attain negative values. This
becomes obvious in the simple limiting case c = 2:

ϕ(ω) = π/2 + arg C(ω) =


+π/4, 0 ≤ ωτ <

√
1−m,

−π/4,
√

1−m ≤ ωτ < 1,
+π/4, ωτ > 1,

%a(ω) = ωµ0|C(ω)|2 =
1

σ∞
·
∣∣∣∣ 1− ω2τ2

1−m− ω2τ2

∣∣∣∣ .
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Fig. 4: Apparent resistivity and phase of a dispersive uniform half-space. The apparent resistivity
is normalized with respect to %∞ = 1/σ∞. In the range 0 ≤ c ≤ 1 a non-dispersive 1D
interpretation of the data is possible, because C(ω) can be presented by branch cuts along
the positive imaginary frequency axis with a non-negative spectral function. For 1 < c ≤ 2
there are in addition two branch cuts off the positive imaginary ω-axis. Therefore no non-
dispersive 1D interpretation is possible. For c0 = 1.78 < c ≤ 2 [ see Eq. (14) ] the phase can
become negative. Dispersion relations connecting phase and apparent resistivity exist in the
full range 0 ≤ c ≤ 2.
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5. Brief look on frequency dispersion by displacement currents
In this last section we are throwing a look on the analytic properties of C(ω) if displacement
currents are taken into account. The uniform ‘dispersive’ conductivity

σ̃(ω) = σ + iωε (15)

with the permittivity ε is assumed in 0 ≤ z < D and σ̃(ω) = ∞ in z > D. The response is again
(6) with σ̃(ω) given in (15).

With (7)-(9) we find as locations of poles and zeroes of C(ω)

• Position on the positive imaginary axis:

ω±n =
iσ ± i

√
σ2 − γ2

n

2ε
, γn ≤ σ,

• Position away from the positive imaginary axis:

ω±n =
iσ ±

√
γ2

n − σ2

2ε
, γn ≥ σ,

with γn := (2n − 1)π
√

(ε/µ0)/D for the n-th pole and γn := 2nπ
√

(ε/µ0)/D for the n-th zero,
n = 1, 2, 3, . . .

There are two branches of poles and zeroes (identified by the superscripts + and −): For small n,
i.e. γn < σ, the branch ω−n starts at the origin and moves the positive imaginary axis upwards and
ω+

n moves from iσ/ε downwards. They meet for γn = σ at iσ/(2ε) and then spread out horizontally
to iσ/(2ε)±∞. The quasistatic case (10) evolves from ω−n with γn < σ:

ω−n =
iγ2

n

2ε(σ +
√

σ2 − γ2
n)
→ iπ2

µ0σD2
·
{

n2 for the n-th zero
(n− 1/2)2 for the n-th pole

Since all poles and zeroes of C(ω) are lying in =ω > 0, dispersion relations between %a and ϕ exist.

For D < ∞ the existence of poles away from the positive imaginaries prohibits a non-dispersive 1D
interpretation. The situation changes for D →∞, when the conductor degenerates into a uniform
half-space. Since in this limit γn → 0, no poles off the positive imaginary axis occur. The response
becomes

C(ω) =
1√

iωµ0(σ + iωε)
=

1
π
√

εµ0

∫ b

0

dλ√
λ(b− λ)(λ + iω)

, b := σ/ε.

Since the spectral function a(λ) is positive, see Eq. (3), a non-dispersive 1D interpretation exists.
In this case it is simply an almost uniformly laminated conductor consisting of an infinite stack
of thin sheets. Each sheet is described by its conductance (= integrated conductivity) Sn and its
depth zn, n = 0, 1, 2, . . . It results

zn = (2n/σ)
√

ε/µ0, n ≥ 0 and S0 =
√

ε/µ0, Sn = 2S0, n ≥ 1.

Here, (2/σ)
√

ε/µ0 is the high frequency limit of the electromagnetic penetration depth and 1/S0

is the plane-wave impedance (= 377 Ω for ε = ε0).
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For the displacement current we have encountered the same situation as for Cole-Cole dispersion:
In both cases 1D interpretation becomes possible only for the uniform half-space, but not even for
the simple layered model considered as example.

6. Conclusions
We have considered the position of singularities of the magnetotelluric response function C(ω) for a
simple model consisting of a uniform layer of thickness D over a perfect conductor, assuming in the
layer Cole-Cole dispersion or simple dispersion by displacement currents. For Cole-Cole dispersion
we have studied frequency exponents c in the range 0 ≤ c ≤ 2, although in practice c is assumed to
be significantly less than unity. This extended range is at least physically possible, only for c > 2
causality breaks down.

The results are summarized as follows:

• For D < ∞ no dense and exact data set resulting from the dispersive conductor can be
interpreted in terms of a non-dispersive conductivity distribution. However, for D = ∞
(uniform half-space) a non-dispersive 1D interpretation becomes possible (in the Cole-Cole
case for frequency exponents 0 ≤ c ≤ 1).

• Dispersion relations between apparent resistivity %a(ω) and the phase of C(ω) exist also
for dispersive data with the frequency exponent restricted for Cole-Cole data in the range
c < c0(m), where c0(m) is given in (14). In the case D = ∞, dispersion relations exist even
for 0 ≤ c ≤ 2.

The results have been obtained for a special simple conductivity profile, but an extension to general
1D profiles with a dispersive section is possible.

The bad news is that so far nobody has reliably identified dispersion effects in magnetotelluric data.
Therefore at present this study reduces unfortunately to a mere exercise in the theory of complex
variables.
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