
Parametric Sensitivities for 2-D Anisotropic
Magnetotelluric Models

Josef Pek1, Fernando A. M. Santos2 and Yuguo Li3

1Geophysical Institute, Acad. Sci. Czech Rep., Prague, Czech Republic ∗
2Physics Department–CGUL–University of Lisbon, Portugal
3Geophysics Department, Free University of Berlin, Germany

Abstract

Theoretical and numerical principles of the parametric sensitivity calculations for 2-D anisotropic magne-
totelluric models are presented. Based on the direct problem formulation and its numerical approximation by the
finite volume technique, we derive partial differential equations and boundary conditions for the sensitivities of
the magnetotelluric fields with respect to the elements of the conductivity tensor within the medium, as well as
with respect to local geometrical parameters of the model. Similarity and symmetry of normal systems of linear
equations that result from the finite volume approximation of both the direct and sensitivity problems can be
exploited to substantially increase the numerical efficiency of practical sensitivity calculations. For illustration, a
simple sensitivity study for a schematic block model is shown.

1 Introduction

Parametric sensitivities play a significant role in geophysical modelling, as they provide quantitative information
about the effect that individual structural parameters have on measured data. In a sensitivity analysis, this infor-
mation can be used to assess the resolution power of a geophysical experiment with respect to specific structures
of interest, to estimate the significance of interpreted model parameters, to design the most suitable experimental
setup for reliably detecting a specific sub-surface target, etc. Effective algorithms for the sensitivity computations
are of primary importance in developing efficient linearized inverse procedures.

This contribution deals with the theory and numerical computations of parametric sensitivities for a specific
class of 2-D magnetotelluric (MT) models with arbitrary anisotropy of the electrical conductivity. It is a part, rather
technical, of a broader initiative aimed at extending the present direct modelling algorithms for anisotropic media
(e.g., Pek and Verner 1997, Li 2002) to a sufficiently automatized inverse procedure for anisotropic conductivities
in the earth. Conceptually, the present sensitivity study is based on joining our direct modelling algorithm (Pek
and Verner 1997) with well-tried sensitivity evaluation approaches developed earlier for 2-D isotropic models (e.g.,
Jupp and Vozoff 1977, Pek 1987, Rodi and Mackie 2001).

The structure of the contribution is as follows: In Section 2, we summarize the main features of the 2-D direct
MT problem for anisotropic conductors and principles of its solution, both in the theoretical and numerical respect.
A few recent algorithmic improvements related to the finite volume (FV) approximation of the problem (Pek and
Verner 1997) are pointed out. Section 3 gives a theoretical basis for the sensitivity modelling in 2-D anisotropic
MT models and summarizes the principles of the numerical sensitivity computations. Section 4 demonstrates the
sensitivity calculations on a simple synthetic block model.

2 2-D Direct MT Problem with Anisotropy

2.1 Model and Basic Equations

The 2-D MT model with arbitrary anisotropy of the electrical conductivity was already analyzed earlier in detail
by Reddy and Rankin (1975), Pek and Verner (1997) and Li (2002). Therefore, we will only briefly summarize the
principal features of this model and the corresponding numerical algorithm here that are significant for subsequent
sensitivity studies.
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We assume a 2-D electrical model with the axis of homogeneity parallel to the x-coordinate direction. The
electrical conductivity of the model is described by a symmetric and positive definite 2-D conductivity tensor
σ(y, z) for z > 0 (flat earth model). The air layer above the earth’s surface is assumed to be a perfect insulator,
i.e., σ ≡ 0 for z < 0. The MT field is excited by a uniform and monochromatic electromagnetic plane wave
coming from remote sources at z → −∞ and propagating perpendicularly to the earth’s surface. We further
assume that (i) the quasi-steady state approximation is applicable to our model, and (ii) the medium considered is
non-magnetic, i.e., µ ≡ µ0 throughout the whole space, with µ0 being the vacuum permeability.

By manipulating Maxwell’s equations for the particular model characterized above, we easily obtain the basic
second order partial differential equations (PDE’s) governing the strike-parallel components of the field (e.g., Pek
and Verner 1997),
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where
D = σyyσzz − σ2

yz , Sy = (σyzσyx − σyyσxz)/D, Sz = (σxzσyz − σzzσyx)/D.

By grouping in (1) and (2) the terms with Ex and Hx together, these equations can be written symbolically,

LEE(Ex) + LEH(Hx) = 0, (3)

LHE(Ex) + LHH(Hx) = 0, (4)

where LEE , LEH , LHE , LHH are linear differential operators according to (1), (2).
The mathematical formulation of the model is completed by providing the boundary conditions at infinity as

well as at conductivity discontinuities within the conductor. Assuming that the 2-D inhomogeneities are spatially
restricted to a finite domain of the model only, the boundary conditions at infinite margins of the model are derived
from the respective 1-D solutions for the 1-D conductivity sections σ(±∞, z).

The internal boundary conditions link the solutions for Ex, Hx from either side of a boundary at which a
jump of the electrical conductivity takes place. In general, the magnetic and tangential electric fields have to be
continuous through conductivity discontinuities within the model. For the particular model structure considered
here, these general conditions require the following functions to be continuous through the contact,

Ex,
∂Ex

∂n
, Hx,

1
D

[
(σyyny + σyznz)

∂Hx

∂y
+ (σyzny + σzznz)

∂Hx

∂z

]
− (Syny − Sznz)Ex, (5)

where n = (0, ny, nz) is a unit normal vector to the boundary, n2
y + n2

z = 1. For a contact of two isotropic media,
the last condition in (5) reduces to the well-known (H-mode) condition of (σ −1∂Hx/∂n) being continuous through
the boundary.

PDE’s (1) and (2) and the corresponding boundary conditions define the mathematical model of the 2-D MT
direct problem for generally anisotropic media. By solving this problem we obtain the strike-parallel fields E x and
Hx throughout the space. The secondary, transverse field components are then easily computed by using the basic
electromagnetic equations,
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2.2 Numerical Approximation by Finite Volume Approach

The 2-D direct MT problem for generally anisotropic conductors has been approximated and solved numerically
both by the finite difference (Pek and Verner 1997) and finite element approaches (Reddy and Rankin 1975,
Li 2002). In our finite volume (FV) approach to the problem (Pek and Verner 1997), the whole model is first
divided into electrically homogeneous rectangular cells by a system of horizontal and vertical lines. Then, a dual
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mesh is constructed through the centres of the primary mesh spacing intervals (Fig. 1a), and the integral form of
Maxwell’s equations is approximated on each of the dual mesh cells by using solely the field values E x, Hx at
the nodes of the primary mesh. By this procedure, we obtain two coupled linear algebraic equations at each mesh
node, which correspond to the original PDE’s for the quasi-E-mode, eq. (1), and quasi-H-mode, eq. (2). The
general form of the FV equations at a (j, k)-th mesh node is
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where Ex(α, β) and Hx(α, β) are the fields at the node (α, β), and the coefficients Cjk depend both on the
conductivities and mesh spacings of the four cells that surround the node (j, k). By their non-zero entries, the two
sets of coefficients CEE

αβ , C
EH
αβ and CHE

αβ , CHH
αβ , respectively, define two generally 9-point stencils at each mesh

node (Fig. 1b).
Fig. 1b shows schematically the situation for the maximum fill-up of the stencils corresponding to the case

of four fully anisotropic cells surrounding the central node (j, k). How many of the stencil positions are actually
occupied by non-zero values depends on the particular conductivities of the cells involved. In particular, no ap-
proximation to the quasi-H-mode equation (2) is done at all on the surface and in the air layer above the conductor,
as the air is an isotropic insulator, and the magnetic fieldHx = const on the surface and throughout the air domain.
The minimum fill-up of the stencils corresponds to the case of an isotropic model, with the two above quasi-modes
decoupled into the standard 2-D E and H field modes.

If a node (α, β) in (7) lies on an external boundary of the model domain, respective boundary conditions
are substituted for the fields Ex(α, β) and Hx(α, β), and the corresponding terms are moved to the r.h.s. of the
FV equations. The boundary conditions at y → ±∞ are computed by a 1-D field propagation matrix routine (e.g.,
Reddy and Rankin 1971). To avoid numerical difficulties arising from rapidly increasing exponentials for large
wave numbers in the 1-D boundary models, we use a modified version of the standard algorithm for the 1-D field
propagation between the top (zT ) and bottom (zB) of a uniform anisotropic layer, based on combining standard
impedance formulas with those for a stable upwards impedance propagation (see, e.g., Dekker and Hastie 1980,
Pek and Santos 2002) and stable downwards magnetic field propagation,
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D0 = 1 + κ1κ2 detZ′(zB) tanh k1h tanhk2h− κ1Z
′
xy(zB) tanh k1h+ κ2Z

′
yx(zB) tanh k2h,

h = zB − zT , kj =
√−iωµ0σj , κj = kj/(iωµ0), j = 1, 2,

where σ1, σ2 are the principal azimuthal conductivities in the layer, and the primed symbols mean components
taken in the principal azimuthal conductivity direction.

By ordering the mesh variablesEx, Hx in, e.g., a column-by-column way, the complete set of eqs. (7) through-
out the mesh will form a normal system of FV linear algebraic equations,

Au = b, (9)

where A is a symmetric and banded matrix of the coefficientsC jk , the vector b is formed of the external boundary
conditions of the problem, and u is a vector of the approximate field values in the mesh nodes. For small and
medium size modelling problems, we use the Gaussian direct elimination procedure, slightly modified to benefit
from the specific structure of the matrix A, to solve the system (9) (Pek and Verner 1997).

2.3 Secondary Fields and MT Functions

By solving the normal system of FV equations (9), we obtain approximate values of the strike-parallel field com-
ponents Ex, Hx in all mesh nodes of the FV grid. The secondary field components E y , Ez , Hy , Hz are then
computed by using formulas (6), which requires the spatial derivatives of the primary components E x, Hx with
respect to y and z to be evaluated.
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Figure 1: a—Model domain covered by a FV mesh (full lines) and a dual mesh (dashed lines). Empty circles show the internal
mesh nodes, full circles are nodes on the extenal boundary of the model domain. One FV integration cell is shown by a black
rectangle. b—Schematic stencils arising from FV discretizing eqs. (1) (top) and (2) (bottom). Circles in the top and bottom
half-boxes symbolize the presence of a non-zero coefficient with the corresponding field Ex and Hx, respectively, at the given
position in the stencil. Full circles show the minimum fill-up of the stencil, corresponding to the isotropic conductor. Empty
circles indicate stencil coefficients that arise due to anisotropy.

Figure 2: Stencils for the approximation of the
transverse field components Hy (left) and Ey

(right), showing positions of non-zero coefficients D,
eq. (10), around a central node (j, k). The top and
bottom panels are for the central node situated on the
surface and inside the conductor, respectively. The
top and bottom half-boxes at the stencil nodes are for
coefficients DE and DH , respectively. Full circles
show stencil positions occupied in case only a simple
parabolic interpolation is used to evaluate the derived
fields.

A common way of evaluating the spatial field derivatives nu-
merically at a specific mesh node is to differentiate an interpolat-
ing function fitted through a pattern of nodes around the central
node. We used, e.g., a three-point central (for Ex) and one-
sided (for Hx) parabolic interpolation to approximate the spa-
tial derivatives on the earth’s surface in (Pek and Verner 1997).
Li (2002) uses a spline interpolation through a whole line of
nodes inside the conductor for the same purpose.

Weaver et al. (1985, 1986) suggested an improved approach
to the numerical evaluation of the spatial derivatives and derived
fields in 2-D isotropic models, which more closely conforms
the approximation procedure used to solve the underlying di-
rect problem. Pek and Toh (2001) suggested a way how to em-
ploy this differentiation procedure within the finite volume ap-
proximation context, and could generalize the improved deriva-
tive formulas to the case of arbitrarily anisotropic 2-D mod-
els. The procedure first performs a suitable conductivity aver-
aging, which modifies the sub-resolution conductivity distribu-
tion within each FV integration cell so that (i) the coefficients
of the FV equations (7) do not change, and (ii) dealing with
inconsistent boundary conditions on sharp boundaries between
the individual mesh cells can be avoided. The spatial derivatives
of Ex, Hx with respect to y and z can be then easily evaluated
by subtracting the FV integrals applied to halves of the stan-
dard FV integration cells, with properly averaged conductivities
used (Pek and Toh 2001). The resulting secondary fields at a
node (j, k) can be then written in a general form,

Hy(j, k), Hz(j, k), Ey(j, k), Ez(j, k) ≈
j+1∑

α=j−1

k+1∑
β=k−1

[
DE

jk,αβEx(α, β) +DH
jk,αβHx(α, β)

]
, (10)

with component-specific coefficients DE , DH , which can be visualized in a stencil form as shown in Fig. 2 for
case of the vertical derivatives.

MT functions, as impedances, geomagnetic transfer functions, etc., can be easily evaluated from the MT field
components computed for two different linear polarizations of the primary field (Pek and Verner 1997).
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3 Parametric Sensitivities

3.1 Parametric Sensitivities with respect to Subdomain Conductivities

Parametric sensitivities of the approximate direct problem solution u with respect to a specific parameter p of the
medium is defined as a partial derivative up ≡ ∂u/∂p. A standard way to evaluating up is to directly differentiate
the normal system (9) with respect to the parameter p (see, e.g., Vozoff and Jupp 1977),

A
∂u
∂p

≡ Aup = −∂A
∂p

u +
∂b
∂p

≡ rp. (11)

The system (11) has the same matrix A as the original system of the FV equations (9), and the systems differ by
their right-hand sides only. The r.h.s. of (11) is easily computed if the direct solution u and parametric derivatives
of the external boundary conditions are known.

If Gaussian elimination is used to solve both the direct and sensitivity systems, (9) and (11), the complete
elimination procedure for the matrix A needs to be carried out only once. Provided the eliminated form of the
matrix A is stored, the solution of (11) involves only a short elimination step for the current r.h.s., r p, followed
by a standard back-substitution (e.g., Jupp and Vozoff 1977, Červ and Pek 1981). This algorithmic modification
speeds up the evaluation of the parametric sensitivities substantially.

The above numerical sensitivities up can be shown to exactly correspond to FV approximated field sensitiv-
ities ∂Ex/∂p and ∂Hx/∂p. The partial differential equations that govern these field sensitivities can be derived
directly from the basic field equations (1), (2).

Let us assume p to be one of the conductivity tensor elements of a homogeneous domain Π of the model. By
varying p to p+ δp within Π, the strike-parallel MT fields will generally change in the whole model to E x + δEx

and Hx + δHx. By successively subtracting the PDE’s (1), (2) for the original conductivity p from those written
for the modified conductivity distribution p + δp, dividing the obtained difference by δp, and evaluating a limit
for δp→ 0, we immediately arrive at PDE’s for the field sensitivities E p

x ≡ ∂Ex/∂p, Hp
x ≡ ∂Hx/∂p,
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where LEE , LEH and LHE , LHH are the linear differential operators introduced by (3), (4). The right-hand sides
of (12), (13) are generally non-zero for points in Π only, and they always vanish outside this domain. Consequently,
the structure of the field and sensitivity PDE’s (3), (4) and (12), (13), respectively, is identical except for the right-
hand sides of the latter system within the domain Π.

The differentiation of the field equations with respect to p also affects both the external and internal boundary
conditions for the sensitivity problem. The sensitivity conditions on the external boundaries of the model are
derived from 1-D sensitivity calculations for the respective 1-D boundary models at y → ±∞. In our current
algorithm, we combine the derivatives of the standard impedance relations, parametric sensitivites of the impedance
tensor according to (Pek and Santos 2002), and derivatives of the magnetic field propagation formula (8) with
respect to p, to generate stable external boundary conditions for the 2-D sensitivity problem. Since we do not
assume a conductivity variation in a finite domain to affect the fields at infinity, the external sensitivity conditions
are always zero for a bounded domain Π.

It can be easily shown that the field sensitivities Ep
x, Hp

x meet the same boundary conditions (5) as the field
components themselves through all internal boundaries within the model except the boundary of the domain Π.
Through the boundary of Π, only the first three conditions of (5) are valid also for the field sensitivities. The last
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one has to be replaced, however, by a more complex boundary condition,
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where Πi, Πe symbolize, respectively, the internal and external side of the boundary with respect to Π.
Eqs. (12), (13) with the corresponding boundary conditions can be FV approximated in the same way as the

original direct problem (1), (2) in (Pek and Verner 1997). With some more algebra involved, this approximation can
be shown to result exactly in the linear system (11). This may be considered a proof of the numerical consistency
of the formally introduced differentiation mapping (9)→(11).

System (11) provides up that approximates the parametric sensitivities of the basic fields E p
x , Hp

x on the
numerical mesh. Approximate parametric sensitivities of the derived, transverse fields can be easily obtained by
directly differentiating formulas (10) with respect to the parameter p. In virtue of (10), any field component can be
expressed at a specific mesh node as ψ = dT u, where ψ ∈ {Ex, Ey, Ez, Hx, Hy, Hz} at a (j, k)-th node, and d
consists of the appropriate coefficients DE

jk, DH
jk. Then,
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Parametric sensitivities of an arbitrary MT parameter, which is a function of the field components at one or
several mesh nodes, F = f(ψk), ψk = dT

k u, k = 1, 2, . . ., can be obtained by simply using a chain rule,
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3.2 Evaluating Parametric Sensitivities by Employing the Reciprocity Principle

By solving once the system (11) we obtain the sensitivity up with respect to one particular parameter p throughout
the model. For a large number of parameters, such as typical of inverse problems based on the Occam strategy,
direct sensitivity evaluations by solving multiple systems (11) are computationally hardly feasible.

The electromagnetic reciprocity principle, declaring interchangeability of field sources and effects, presents a
way of substantially reducing the computation time necessary for the sensitivity calculations, provided the number
of the mesh nodes at which the sensitivities are to be evaluated is substantially less than the total number of
parameters. This results in an acceptable compromise, as in many cases, and for inverse problems in particular, the
sensitivities are only required at nodes that correspond to the measurement sites on the earth’s surface.

In the numerical domain, the electromagnetic reciprocity principle is expressed by a symmetry of the nor-
mal FV matrix A in (9), i.e., A = AT (e.g., Rodi and Mackie 2001). Then, e.g., (15) can be modified as follows,

ψp =
∂dT

∂p
u + dTA−1rp =

∂dT

∂p
u + dT (A−1)T rp =

∂dT

∂p
u + (A−1d)T rp =

∂dT

∂p
u + gT rp, (17)

where g solves the system
Ag = d. (18)

Thus, by using (17), ψp is computed for all parameters p with only once having to solve the system (18) with the
appropriate vector d. Altogether, we need four solutions of this system to compute all the sensitivities for all field
components relevant to MT studies (Ex, Ey , Hy , Hz , the component Hx is insensitive to any internal parameter)
at one node and at one period. Computing the sensitivities for two different polarizations of the exciting field does
not add to this number, i.e., again four solutions of (18) are needed to compute all the parametric sensitivities for
any standard single-site MT function at one site and one period.

Rodi and Mackie (2001) have shown that further saving is possible if the sensitivity evaluation according
to (17) is employed within a non-linear conjugate gradients inverse algorithm, where explicit computations of the
sensitivities can be avoided and only products of the sensitivity matrix with a vector are required.
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3.3 Parametric Sensitivities with respect to Geometrical Parameters

In models that are products of modern inverse algorithms the geometry is mostly not dealt with explicitly. Bound-
aries of geological structures are hypothesized from increased conductivity gradients in models that are discretized
into a fine mosaic of homogeneous cells. Specific regularization approaches have been suggested to focus large
scale structures and sharpen their edges (e.g., Portniaguine and Zhdanov 1999).

Nonetheless, for pure sensitivity studies, it may be sometimes of interest to have a tool for assessing the effect
of a varying boundary or depth within the model on MT data. Ku (1976) and Rodi (1976) presented a method
that used the grid spacings as geometrical parameters, and computed the geometrical sensitivities in the numerical
domain by directly differentiating (9) with respect to the mesh steps. For a properly designed mesh, the sensitivities
computed in such a way should be only little affected by the error resulting from the varying mesh geometry. One
problem of this approach is that variations in a mesh step can result in geometrical changes in the whole model,
and the sensitivity with respect to a particular local geometrical feature may be difficult to distinguish.

A B

A' B'

�z

y

z

AB

Figure 3: Variation of a local horizontal boundary
section AB demonstrating the introduction of the
parametric sensitivity with respect to zAB (19).

Another, more rigourous way to evaluate the geometrical sen-
sitivities is to start from a theoretical formulation of the prob-
lem and derive the PDE’s and corresponding boundary condi-
tions that control the sensitivity fields. This approach was used
by Pek (1987) for 2-D isotropic models.

Let us for simplicity consider a local horizontal boundary sec-
tion AB (Fig. 3), with its vertical coordinate being zAB . Mov-
ing this section by ∆zAB into a new position, A′B′, causes the
MT fields to change throughout the model, from the original
value ψ to a perturbed value ψ ′, where ψ is for any MT compo-
nent. Now, we define the sensitivity of ψ with respect to p ≡ zAB

as follows,

ψp ≡ ∂ψ

∂zAB
= lim

∆zAB→0

ψ′ − ψ

∆zAB
. (19)

Considering eqs. (1), (2) for both the unperturbed and perturbed geometry, and by using (19), it can be easily
shown that the sensitivities Ep

x, Hp
x are governed by a coupled system of homogeneous PDE’s,

LEE(Ep
x) + LEH(Hp

x) = 0, (20)

LHE(Ep
x) + LHH(Hp

x) = 0, (21)

in any domain with a smoothly varying conductivity.
The external boundary conditions for (20), (21) can be obtained from the corresponding 1-D sensitivities with

respect to the thicknesses of layers in an anisotropic layered medium (Pek and Santos 2002). Through any internal
contact of the medium except the section AB itself, the internal boundary conditions (5) can be shown to be valid
also for Ep

x and Hp
x . Deriving the boundary conditions through AB requires a special treatment as described

in (Pek 1987). Without going further into detail here, we can prove that the following functions are continuous
through the horizontal boundary section AB,

Ep
x,

∂Ep
x

∂z
− iωµ0

[
(σxx + Szσxy + Syσxz)Ex + Sy

∂Hx

∂y
− Sz

∂Hx

∂z

]
,

Hp
x +

∂Hx

∂z
,

σzz

D

∂Hp
x

∂z
+
σyz

D

∂Hp
x

∂y
+ SzE

p
x +

∂

∂y

(
σyy

D

∂Hx

∂y
+
σyz

D

∂Hx

∂z
− SyEx

)
.

(22)

In contrast to the field boundary conditions (5), the boundary conditions for the geometric sensitivities E p
x , Hp

x are
more complex. Only Ep

x is continuous through a contact, H p
x and the normal derivatives of both E p

x and Hp
x are

discontinuous, with jumps depending both on the conductivity contrasts through the boundary and on the behaviour
of the direct solutionEx, Hx near the boundary section AB. The boundary conditions (22) can be easily modified
for a vertical boundary section, and, after some generalization to the sensitivity definition, for an oblique contact
as well.

PDE’s (20), (21) along with the corresponding external boundary conditions and conditions (22) through inter-
nal contacts represent a complete system which can be solved for the sensitivities of the MT field with respect to
the coordinate of the local boundary sectionAB. FV approximation of this system is rather straightforward and re-
sults in a linear algebraic system analogous to (11). Special attention has to be paid, however, to the approximation
steps with the discontinuous boundary conditions (22) involved.
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4 Numerical Example

The parametric sensitivity analysis for anisotropic models has been primarily considered an auxiliary tool within a
broader study aimed at developing an inversion algorithm for 2-D anisotropic MT structures, which would also be
the main application scope of the present study. Here, for illustration purposes, we present only a very simple 2-D
model analysis to demonstrate the sensitivity calculations. The model chosen consists of a homogeneous resistive
halfspace with the resistivity of 1000 Ωm and a conductive anomalous block with the resistivity of 1 Ωm, size
of 10×1.5 km, situated at the depth of 9 km below the surface (Fig. 4a). The question to be analyzed by the
sensitivity studies is how the surface MT functions of this model respond to small unidirectional variations of the
conductivity within that part of the host medium that overlies the anomaly (hatched in Fig. 4a). First, we analyze
the effect of a horizontal conductivity variation of the host on the geomagnetic transfer functions W x and Wy ,
defined by Hz = WxHx + WyHy . For the original (isotropic!) model, the strike-parallel component W x = 0.
Real and imaginary parts of Wy are shown in Fig. 4b.

Panels Fig. 4c through 4f display the sensitivities of Wx, Wy with respect to the principal horizontal resis-
tivity 	1 of the layer above the conductive block for different principal directions α S ∈ (0, 90) deg. Clearly,
the largest effect on Wy , but no effect at all on Wx, is observed if the resistivity changes along the strike, i.e.,
for αS = 0 deg. Resistivity variations in the transverse direction, i.e., for αS = 90 deg, do not show any influence
on the geomagnetic transfer functions, since only H-mode fields are affected in this case. Except for these two

Figure 4: Sensitivities of the geomagnetic transfer functions with respect to the principal resistivities of the host medium. a—
Model of a conducting anomaly in a resistive host. The sensitivities are computed with respect to the principal resistivities of
the hatched layer. b—Real and imaginary parts of the geomagnetic transfer function Wy on the surface. c, d, e, f—Sensitivities
of Wx, Wy with respect to a horizontal principal resistivity �1 in various directions αS ∈ (0, 90) deg. The curve symbols for
the specific values of αS are shown in the legend to panel c.
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Figure 5: Sensitivities of the off-diagonal MT impedances with respect to the principal resistivities of the host medium for the
model from Fig. 4a. a, b—Sensitivities of Zxy with respect to the horizontal principal resistivities �1 (‖ αS) and �2 (⊥ αS)
for two values of the azimuth, αS = 0 and 45 deg. c, d—The same as in a, b, but for the impedance element Zyx. Missing
curves for αS = 0 would correspond to sensitivities equal to zero. e—Sensitivity of Zyx with respect to the vertical principal
resistivity �3. f—Comparison of resistivity and phase curves above the center of the model for various values of the vertical
resistivity �3 ∈ (100, 10000) Ωm. E is the E-mode curve, which does not depend on the vertical resistivity, the other curves
correspond to the H-mode and are labeled according to �3 in Ωm.

marginal cases, the mode coupling generally causes both Wx and Wy to respond to the principal resistivity vari-
ations. In terms of conductivity variations, σ1 = 1/	1, increasing the conductivity σ1 in a general direction αS ,
0 < αS < 90, results in a decrease of ReWy and a positive ReWx arising along the positive section of the
profile, y > 0, and vice versa along its negative section. This agrees with a phenomenon described earlier by
Schmucker (1994) and Pek and Verner (1997) that, in structures similar to our model, the real induction arrows,
TR = (ReWx,ReWy), do not strictly obey the rule of perpendicularity to the strike, but, quite the contrary, are
attracted towards the direction of the best conductivity within the anisotropic layer. The imaginary parts of the
geomagnetic transfer functions show similar behaviour (Fig. 4d, f).

Another example analyzes, for the same model setting as above, the sensitivity of MT parameters with respect
to a variation in the vertical principal resistivity 	3 ≡ 	z within the top layer of the model. This parameter is often
disregarded in MT studies as it is known to be absolutely ‘invisible’ in 1-D layered MT models.

Fig. 5 shows the sensitivities of the off-diagonal impedance elementsZxy,Zyx both with respect to the principal
horizontal resistivities, 	1 and 	2, and to the vertical resistivity, 	3, for two directions of the variation azimuths,
αS = 0 and 45 deg. Clearly, for αS = 0 deg, Zxy and Zyx do not sense 	2 (⊥ αS) and 	1 (‖ αS), respectively. As
any change in the vertical resistivity leaves the E and H-field modes uncoupled in our specific model, variation
in 	3 can be sensed by the impedance component Zyx only. Panels c, d, e in Fig. 5 show that this sensitivity,
measured by ∂Zyx/∂	3, is far from neglible, and is quite comparable to the sensitivities of Z yx with respect to
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the horizontal resistivity variations. A serious effect of the vertical resistivity on MT data is further illustrated
by Fig. 5f that shows the apparent resistivities and phases above the center of our model for different vertical
resistivities 	3 ∈ (100, 10000) Ωm.

5 Conclusion

Parametric sensitivities provide serious information for assessing the significance and resolvability of the struc-
tural parameters of the model under study, and are an indispensable part of linearized inverse algorithms. In this
contribution, we have tried to present a comprehensive description of both the theoretical and numerical aspects of
the sensitivity computations for a specific class of 2-D MT models with arbitrary anisotropy of the electrical con-
ductivity. Starting from the direct problem formulation (3), (4), (5), and its numerical FV approximation (9), we
could derive theoretical formulations of and numerical approximations to the parametric sensitivity problems for
both the physical and geometrical parameters, i.e., for conductivity tensor elements, eqs. (12), (13), (14), and (11),
and for local boundary sections, eqs. (20), (21), (22). In numerical respect, all the advantages of the normal ma-
trix A being symmetric and common to both the direct and sensitivity problems could be easily exploited in the
anisotropic case as well.

Further research aimed at incorporating the MT sensitivity computation algorithm into a linearized inversion
for 2-D anisotropic conductivities is going on.
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