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Abstract

We report on progress in developing a magnetotelluric inversion method for two-dimensional
anisotropic conductivity distribution. A standard two-dimensional model is discretized into
a number of rectangular cells, each with a constant conductivity tensor, and the solution of
the inverse problem is obtained by minimizing a global objective functional consisting of data
misfit, a structural constraint and an anisotropy constraint. All minimizations are carried
out by using the Gauss-Newton algorithm, and model perturbations at each iteration step
are obtained by a conjugate gradient least squares method. The inversion algorithm is tested
on synthetic data generated by two elementary models: a single prism and two prisms with
anisotropy.
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1 Introduction

Electrically anisotropic structures have recently gained serious attention in electromagnetic induc-
tion studies of the Earth’s crust and upper mantle. Complex studies in the KTB area clearly
evidenced the real existence of crustal electrical macro-anisotropy that fits well into the tectonic
plot of the region (e.g., Eisel & Haak, 1999). Considering jointly the seismic and electric anisotropy
in the lithospheric and sub-lithospheric upper mantle has evolved into a promising indicator for
large-scale deformation processes in the Earth (e.g., Mareschal et al., 1995; Simpson, 2001; Bahr
& Simpson, 2002). As two-dimensional (2D) anisotropy can produce magnetotelluric (MT) effects
analogous to those generated by complex 3D structures with multiple co-acting strikes, anisotropic
models may be in suitable cases employed as better tractable surrogates for those difficult 3D
settings (e.g., Lezaeta & Haak, 2003; Weckmann et al., 2003).

As compared to the isotropic case, the MT inversion for a generally anisotropic conductivity
distribution in 2D laterally inhomogeneous structures has to cope not only with increased number
of model parameters (by a factor of six in the most general anisotropic case) and more difficult
direct and sensitivity solution procedures (coupled system of quasi-E and quasi-H-equations), but
also with a largely more complex pattern of equivalencies and ambiguities of the model parameters
within the structure.

At present, we have finalized the very basic steps towards a working 2D MT inversion algorithm
for anisotropic conductivities. In a companion paper (Pek et al., this volume), the theoretical
and numerical principles of the parametric sensitivity calculations for 2D anisotropic MT models
are presented. The authors show two approaches for calculating the parametric sensitivity of MT
fields. The first approach directly solves the boundary value problem for the parametric sensitivities
by using the finite volume (FV) approximation, the second method exploits the electromagnetic
reciprocity principle. The latter approach is more efficient when the number of data sites is less
than that of the model parameters used in the inversion. In the present paper, the sensitivity
computations that employ the reciprocity principle are incorporated into the inverse procedure for
2D anisotropic conductivity structures and an MT anisotropic inversion method is presented. In
what follows, the inversion methodology is described briefly, and the algorithm is then illustrated
by inverting data sets for two simple synthetic models.

2 Inversion methodology

2.1 Inversion parameter

The conductivity distribution in an anisotropic medium can be described by a symmetric positive-
definite 3×3 conductivity tensor that can be represented by three positive principal conductivities
and three Euler angles. It is suitable to choose the logarithms of three principal conductivities
(σ1, σ2, and σ3 ) and three Euler angles (αs, αd, and αl) as inversion parameters. For a single
homogeneous cell in the subsurface, we have thus six inverse parameters, i.e. lnσ1, lnσ2, lnσ3, αs,
αd, and αl.
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2.2 Objective functional

The objective functional to be minimized is

Φ(m, λs, λa) = Φd(m) + λsΦs(m,mref ) + λaΦa(m), (1)

with

Φd(m) = ||Wd[dmod(m)− dobs]||2, (2)

where λs and λa are weights of the structure and anisotropy penalties, respectively, dmod(m) is
predicted data for a given model conductivity distribution m, dobs is the measured data and Wd is
a covariance matrix of the measured data. As the diagonal impedance elements play a crucial role
in the inversion for an anisotropic electrical structure, we assume that the measured data vector
dobs consists of the real and imaginary parts of all the four elements of the impedance tensor.

The structural penalty functional Φs is defined by

Φs(m,mref ) = (m−mref )TRTW2
mR(m−mref ). (3)

Here mref is a reference model, and R is a matrix of the first differences of the neighbouring model
parameters. Wm is a weighting matrix for the model parameters, which may be determined by
square roots of the integrated sensitivity matrix (Mehanee et al., 1998).

The anisotropy penalty functional Φa(m) is defined according to Pain et al. (2003),

Φa(m) =
∫

Ω

(
lnσ1 lnσ2 lnσ3

)



2 −1 −1
−1 2 −1
−1 −1 2






lnσ1

lnσ2

lnσ3


 dΩ, (4)

the purpose of which is to make σ1, σ2 and σ3 equal.

2.3 Minimization

Minimizing the objective functional (1) by the Gauss-Newton method leads to solving repeatedly,
for a series of iteration steps, the following equation for the model perturbation δm ,
(
STW2

dS + λsRTW2
mR + λaA

)
δm = −STW2

d [dmod(m)− dobs]− λsRTW2
m [m−mref ]− λaAm, (5)

where S is the Jacobian matrix of sensitivities, which is obtained by the reciprocity method of
sensitivity calculation presented in (Pek et al., this volume). The matrix A is the extension matrix
of the 3 × 3 symmetric matrix in eq. (4). The equation (5) is solved by the conjugate gradient
least squares (CGLS) method (Björck, 1996). The obtained model perturbation δm is added to
the current model parameter vector m to give the new model. With the updated model, the next
iteration step is entered and (5) is solved again until a termination criterion is met.

3 Inversion results for synthetic data

This section presents inversion results for two synthetic data sets. The synthetic data sets are
calculated with a finite element algorithm of Li (2002), whereas the inversion algorithm employs
the finite difference algorithm of Pek & Verner (1997). Random noise was added to the computed
impedance values, with a standard deviation of 2 percent.

3.1 Model 1

Fig. 1 shows the first test model, in which an anisotropic prism, with horizontal anisotropy only, is
embedded into an isotropic homogeneous half-space with ρ = 100 Ωm. The inversion test uses the
synthetic data at 13 sites along the surface and for 10 periods between 10 and 104 seconds, giving
a total of 1040 data. The starting model for the inversion is an isotropic homogeneous half-space
with the resistivity of 71 Ωm. The structural penalty parameter λs and the aniostropic penalty
weight λa were chosen as 5 and 20, respectively. Fig. 2 shows an inversion solution for the synthetic
data set generated from the model in Fig. 1. We can see that the anisotropic block is correctly
reconstructed as to its position, and roughly as to the resistivity values and anisotropic angles.
However, the αs shows some artifacts outside the true anomalous zone, specifically αs produces
some symmetric ‘wings’ around the anomaly. The apparent resistivities and phases of the synthetic
model (Fig. 1) and those of the inversion model (Fig. 2) are shown in Figs. 3 and 4, respectively.
We can see a rather good agreement in all the four components of the apparent resistivity and
phase.
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3.2 Model 2

The second test model consists of two anisotropic prisms, again with horizontal anisotropy only,
embedded in an isotropic homogeneous half-space (Fig. 5). The initial model for the inversion
is again an isotropic homogeneous half-space, with the resistivity of 71 Ωm. The regularization
parameters λs and λa were chosen as 5 and 20, respectively. Fig. 6. shows an inversion model
obtained after 4 iterations. We can see that the two anisotropic blocks are good resolved as to their
positions, and roughly also as to their resistivity values and angles. The apparent resistivities and
phases from the synthetic model (Fig. 5) and those from the inversion model (Fig. 6) are shown
in Figs. 7 and 8, respectively. We find good fits to both the apparent resistivities and phases.

4 Discussion and conclusions

We have presented the first test results of an inversion method for reconstructing anisotropic re-
sistivity distribution in two dimensions from magnetotelluric fields. We have used the structural
and anisotropic constraints to overcome the non-uniqueness of the solution of the inverse problem.
The inversion method is demonstrated by using two simple synthetic models. Though the first
results look promising, they present only a very basic step towards a practically working inverse
procedure. The main purpose of the present contribution is just to demonstrate all the funda-
mental algorithmic items of the developed inverse procedure working together. There is still a
lot of questions that have not been addressed yet, which specifically refers to various aspects of
the regularization implementation (e.g., is it enough to regularize the structure and anisotropy
simply by using the aggregated penalties (3) and (4), or is a separate, and maybe even adaptive
regularization applied to individual parameters more appropriate, how to select the multiple regu-
larization weights effectively, etc.), to questions of model smoothing and artifact suppression, and
particularly to problems of the computational performance of the inverse algorithm. All these
points are on the top of our present research activities.
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Figure 1: The synthetic model 1. Anisotropic prism is embedded into an isotropic homogeneous
half-space of 100 Ωm. The principal resistivities and anisotropy directions within the anomaly are
ρ1/ρ2/ρ3 = 100/10/100 Ωm and αs = 30◦, αd = αl = 0◦.
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Figure 2: Inversion model for the synthetic data set generated from the model in Fig. 1.
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Figure 3: The apparent resistivities and phases from the model shown in Fig. 1.
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Figure 4: The apparent resistivities and phases from the inversion model shown in Fig. 2.
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Figure 5: The synthetic model 2. It consists of two anisotropic prisms with horizontal anisotropy.
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Figure 6: Inversion model for the synthetic data set generated from the model in Fig. 5.
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Figure 7: The apparent resistivities and phases from the synthetic model shown in Fig. 5.

20. Kolloquium Elektromagnetische Tiefenforschung, Königstein, 29.09.-3.10.2003, Hrsg.: A. Hördt und J. B. Stoll



1

2

3

4

T
 [

s
]

-50 -40 -30 -20 -10 0 10 20 30 40 50
Y [km]

0 10 20 30

  ρ yy [Ωm] 

1

2

3

4

L
o

g
(T

) 
[s

]

-50 -40 -30 -20 -10 0 10 20 30 40 50
Y [km]

-180-90 0 90 180

  φ yy [Degree] 

1

2

3

4

T
 [

s
]

0 100 200 300

  ρ yx [Ωm]  

1

2

3

4

L
o

g
(T

) 
[s

]

110120130140150

  φ yx [Degree]  

1

2

3

4

T
 [

s
]

40 80 120

  ρ xy [Ωm] 

1

2

3

4

L
o

g
(T

) 
[s

]

-50 -40 -30

  φ xy [Degree] 

1

2

3

4

T
 [

s
]

0 2 4 6 8 10

 ρ xx [Ωm]

1

2

3

4

lo
g

(T
) 

[s
]

-180-90 0 90 180

 φ xx [Degree]

Figure 8: The apparent resistivities and phases from the inversion model shown in Fig. 6.
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