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Abstract

The utilization of free decay eigenmodes may be a promising approach to handle the computa-
tional work involved when modelling multi-frequency electromagnetic responses with high data
density over three-dimensional conductors, as is substantial e.g. in airborne applications.

Each halfspace conductivity distribution owns a characteristic, continuous spectrum of free
decay eigenfunctions and eigenvalues forming the decay constants. The electric eigenmodes in a
conductor are governed by a homogeneous induction equation for the electric field, combined with
the ansatz of an exponential decay with time. Outside the conductor the associated magnetic
modes obey a potential field. Therefore, modes in the air are determined by field continuation
of the magnetic modes at the earth’s surface.

Even though the eigenmodes are constituted in time-domain, the frequency-domain electro-
magnetic responses of a conductor can be obtained by an expansion in terms of the eigenmodes,
simply requiring the modes at positions of transmitter and receiver superposed with source de-
pendent weights.

The defining equation for the electric eigenmodes is approximated using finite differences on
a staggered grid spanning only the conductor. The air halfspace is treated by incorporating
a surface integral-boundary condition. After finite-differencing, a sparse real-symmetric matrix
system of equations is assembled. The large eigenvalue problem is solved using Sorensen’s implic-
itly restarted Lanczos algorithm. The output is a discrete set of eigenmodes. In a first version of
our modelling code, we have implemented the use of all eigenmodes for the field synthesis. For
a modest sized grid, the code has been compared with the 1D analytical solution and produces
results in very satisfactory agreement.

Unfortunately, for larger grids the memory requirements of the eigenvalue solver do not allow to
simultaneously acquire all eigenmodes. One strategy to overcome this limitiation is to successively
calculate small parts of the set of eigenmodes. This can only be achieved using a spectral
transformation, which main drawback is the demand for the action of the shifted matrix inverse
on a vector. In addition, the shifted matrix is indefinite and difficult to precondition for successful
application of an iterative solver.

As a further improvement of the algorithm, ways of a proper partial synthesis using only few
eigenmodes are discussed.

Introduction

The computational effort of 3D frequency-domain modelling is extremely high due to the fact
that usually a large complex system of equations has to be solved many times for multiple soure
locations and multiple frequencies. This applies for example to the finite differences implemen-
tation of Newman and Alumbaugh (1995) as well as to the code of Avdeev et al. (1998), which is
based on the volume integral equation solution to Maxwell’s equations. An important advance
in modelling is suggested by Druskin and Knizhnerman (1994), who show that it is possible to
obtain the multi-frequency responses at almost the computational cost for a single frequency
using spectral Lanczos methods. The advantage of being able to solve efficiently for multiple fre-
quencies is retained in the further development of the spectral Lanczos method (Druskin et al.,
1999), but both still need to solve the system repeatedly for the source positions.
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Our approach is to avoid this repetition by exploiting eigenmodes. The striking feature of
free decay modes is their independence of any source. For a given conductivity distribution
they have to be determined once only. This one set of eigenmodes then allows to obtain the
responses of arbitrary measuring configurations and frequencies through ordinary superposition
at low computational cost. However, the criticial point of this method is the effort which is
necessary to aquire the set of eigenmodes.

In this paper we show how to simulate electromagnetic responses using eigenmodes which are
determined by means of finite differences. First the theoretical basis concerning the properties
of free decay modes and field continuation is compiled. Subsequently, a few notes regarding
the practical implementation are given. We focus on symmetry and sparsity conservation when
building the system matrix and a proper choice of the algorithm solving the resulting eigenvalue
problem. The application of the method is then presented for a simple half-space model.

In the following, two aspects for the potential optimization of the method are evaluated:
Numerical refinements when using the implicitly restarted Lanczos algorithm lead to the necessity
of an iterative solver with an appropriate preconditioner. Secondly, we discuss the convergence
behaviour of the superposition if only a limited number of modes is available.

Theoretical basics

Starting from Maxwell’s equations in quasistatic approximation

VxE(r) = —B(r), (1)
VxB(r) = polo(r)E(r)+ L.(r)] (2)

and after elimination of B the induction equation
V x V x E(r) + poo(r)E(r) = —poJ,(r) (3)

is obtained. In these expressions £ and B are the vectors of the electric and magnetic field, and
o(r) denotes the electrical conductivity as a function of position. J,(r) is the source current
density. The dotted variables signify time derivatives. In the absence of an exciting source the
equation reduces to

V x V x E(r) + poo(r) E(r) = 0. (4)
The assumtion of an exponential decay with time of the electric field
E(r,t) = e(r) exp(=Xi) (5)
leads to the eigenvalue problem
V x V x g(r) = Ao (r)e(r) (6)

with the decay constant A as eigenvalue for the spatial stationary eigenfunction e(r). Following
Weidelt (1982, Appendix C) all solutions to (6) form an orthogonal set of vectorial eigenfunctions
with o(r) as weighting function. Though the eigenvalue spectrum is continuous, the eigenval-
ues and -functions are denoted symbolically by discrete quantum numbers n and k. Then the
orthogonality relation reads

L, o) ee)ens) d'r = b 7)

and for o(r) > 0 the set forms a complete system. The field for any exitation in frequency-
domain can be obtained by expanding E(r,w) into a series of free decay modes (Weidelt, 1983,
Appendix D)
E(r,0) = En(r,0) + 3 an(w) €0(2) (8)
n
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with the source dependent weights

—iw
an) = 3o [ o @en(ro) dr ©)

and E (r,w) accounting for the incompleteness of the expansion in the air, where o=0 is
assumed. Remarkably, only eigenmodes at the positions of source r, and receiver r do contribute
to the expansion.

A similar relation can be derived for the magnetic field. Subsequently, we treat the case of
a vertical magnetic dipole (VMD) at r, with moment m(w). The vertical component of its
magnetic field response can be expressed by

[V X en(r)], [V X ey (ro)]
An +iw

B..(r|rg,w) = Bzz,00(r|rg) + pom(w) Z

n

- (10)

where again B, o (r|rg) accounts for the non-vanishing field in the air at the limit w — oco. Due to
[V X e,(r)], = —b.n(r) the vertical component of the time derivative of the magnetic eigenmodes
bon may be substituted for the terms with the electric eigenmodes. Special care must be taken if
source 1 and / or receiver r are situated in the air, since the eigenvalue equation (6) defines the
electric eigenmodes only inside the conducting earth. Anyhow, to determine them is described
in the following.

In the insulating air half-space, which is assumed to be at z < 0, holds

VXE = —B, (11)
VxB = 0. (12)

Therefore, B is given by a scalar potential U:

B=-V—. 1
B=-v (13)

Using V2U = 0, the potential may be determined by applying

A AR
0x2  Oy? 022

- VU = =" (14)

to all wanted discrete values ¥, (p = 1,...,P) of the potential in z < 0. Combining them to
the vector of all potential values ® = [¥y,..., ¥p]" and building —V%¥ = ®” leads to the
P-dimensional matrix system

F ¥(z) = ¥"(2). (15)

If v; and 77]2- are eigenvectors and eigenvalues of the problem F v; = 77]2- v; it holds for z <0
P
W (z) = Zc]- v; eli®, (16)
=1
The coefficients ¢; are set by the boundary values B,(z = 0) = —®"(z = 0), this yields

To summarize, for z < 0 the magnetic field derivative B (z) is defined completely by all the

vertical components B,(0) at the earth-air interface. This relation is valid also for the magnetic
eigenmodes b,, needed in the expansion (10) for the field of the VMD.
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Figure 1: Schematic grid used for finite differencing.

ay(i+1)

Implementation

In order to solve the eigenvalue problem (6) numerically, we employ finite differences on a stag-
gered grid, as sketched in Figure 1. The conducting subsurface is divided into Ny = nznyn,
regular cells with uniform conductivity o,, = o(,7, k) and volume V,, = a(i) b(j) c(k), the cell
edges are at (i), z(#), y(j), y(#H), z(k) and z(kH). To each cell are assigned three electric and
three magnetic eigenmode components, which are spread on the grid as outlined by Yee (1966).
In the staggered arrangement (Figure 2) the magnetic eigenmode components are assigned to the

X
e,(i,j;K) | _
MY *b(IAJkL/

b,k

e,(i,j,K)L a(i,j,k)

o
b,(1,j,K)

_ _—— — — - .

Figure 2: Yee grid of cell (1, 7, k).

center of the faces of the cell and the electric ones to the edges. For simplicity, the components
are numbered using only integer indices, namely those of the associated cell, though this does
not reflect their actual coordinate on on the grid. For example e, (i, 7, k) is located at coordinate
{z:(i),y(4),z(k)}, where z.(i) = [z(i+1) — z(¢)] /2. The distances between the midpoint coor-
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Figure 3: The grid cells and associated electric and magnetic components required for the FD
equation of e, (i,7,k). The prism p.(i,7, k) with averaged conductivy &,(i,7,k) is
shaded.

dinates z.(7), yc(j), zc(k) of cell (7,7, k) and its next neighbour in positive direction are labeled
ap (i+1), by (44+1), cp(k+1), and we define ap (1) = a(1), ap(ny41) = a(n,) and the values in y and
z direction respectively.

At the boundary to the air-halfspace, the grid is artificially extended half a cell height ¢(1)/2
into the air and missing values are replaced by those obtained using field continuation, which
will be explained in detail below. The other five bounding walls of the grid are assumed to
be perfectly conducting (Dirichlet boundary conditions), which demands vanishing tangential
components of the electric eigenmodes.

When establishing the finite difference version of the eigenvalue problem, it is necessary to
employ spatial averages of the conductivities to take into account the differences resulting from
the placement of the electric components on different edges of the cell. We integrate over a prism
centered around each electric component and calculate the volume-weighted arithmetic average
of the conductivity of the surrounding cells along the current path. The average conductivity 7,
associated with e, of cell (7, j, k) for example is (see also Figure 3)

5alisiik) = — {bU)qkﬁﬂL$k)i%ﬁ@—UcMﬁa@J—Lk) N } (18)
7 4p,(i,75,k) | + b(5—1) c(k=1) o(4,5-1,k-1) + b(j)c(k-1)o(i, 4, k1) [’

where p, (7,7, k) = a(i) by () e (k) is the prism used for integration. The finite difference approx-
imation of (6) for component e, of cell (i, 7, k) then can be written as

bz(iaja k) - bz(laj_]-ak) by(iaja k) B by(iaja k_]-)

bn(4) cn(k)

= _Aﬂﬂam(iajak) eir(iajak)a (19)

where b, and by have to be replaced by the finite difference version of b= —V x e, for example

S ey(i+l,5,k) — ey (i, 5, k) ex(i,j+1, k) — ex (7,4, k)
b k) = - 422 y\o by JT 0 J 5

(20)
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From (19) and (20) it is apparent that each electric component inside the grid is connected with
only twelve surrounding electrical components. Therefore, setting up the equations for all electric
components on the grid yields a matrix system with no more than 13 entries per row. The matrix
symmetry is conserved by the transformation

e(i, 4, k) = \/1opali, 4, k) (i, 4, k) ealidi k), (21)

which mainly contains the square root of the average conductivity and the volume of the inte-
gration prism belonging to the respective eigenmode component. Similarly, the transformation
has to be performed for the e, and e, components.

The ideal sparse structure of the matrix is disturbed for the horizontal components of the first
grid layer (k=1), where the boundary condition introduces additional elements into the system
matrix. Namely, instead of applying an equation like (20) to replace the magnetic eigenmode
component which is situated in the air-halfspace, as by(z, j,k—1) in the above example, it is
determined using field continuation. Following (13), (16) and (17), the field continuation of one
magnetic component needs all bz(z, J,k=1) at the grid surface. Or, expressing the continuation
solely through electric eigenmodes using (20) shows that all horizontal electric eigenmodes e, and
ey with k=1 do contribute. This leads to a dense submatrix for the Nj, = n, (n,—1) + (n,—1) n,
nontrivial horizontal electric eigenmode components of the top cells. Excluding the vanishing
tangential eigenmode components at the perfectly conducting walls, the total numer of nontrivial
electric eigenmode components is

N = ng(ny—1)n, + (ng—1)nyn, + (ny—1)(ny—1)n,. (22)
The matrix form of the eigenvalue problem with dimension N reads
Ax=)\x, (23)

where x is the vector of all electric eigenmode components. It seems to be advantageous to

x~
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Figure 4: Sparsity structure of the matrix associated with a small 4 x 3 x 3 grid. The dimension
of the matrix is N = 69, the FD non-zero elements are represented by squares and the
elements due to field continuation are marked with x.
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order the components in the vector with depth, thus assembling all e;, e,, e, for one layer before
proceeding to the next deeper one. The sparsity structure of the complete system matrix A
is illustrated in Figure 4. The matrix A has the properties of being real, symmetric, positiv-
semidefinite, high-dimensional (N =~ 3N,) and sparse with predominantly 13 entries per row or
column. Only the matrix’ non-zero elements are stored using a Compressed Sparse Row (CSR)
storage scheme (see e.g. Saad (1995)), which does not account for the symmetry, but was chosen
because it is commonly used in sparse matrix software like SPARSKIT (Saad, 1994). This public
domain code is used to efficiently perform some of the required standard matrix operations.

Solving the posed large eigenvalue problem with direct methods like Householder reduction
to tridiagonal form and suitable factorization does not account for the sparsity of the matrix
and becomes not feasible when the grid size is increased. Established algorithms to specifically
treat large, sparse eigenvalue problems are provided by the software package ARPACK (Lehoucq
et al., 1998). Thereof the Implicitly Restarted Lanczos Method (IRLM) is used to determine the
set of N eigenvalues A, and eigenvectors x, of our system matrix.

To model the frequency response of the conductor, merely a small part of each eigenvector,
namely x? = [2,,1,...,2,,n,]7, is needed: Since the synthesis (10) needs the magnetic eigen-
modes only at the measuring positions, for airborne applications it is sufficient to store for each
of the N eigenvalues the corresponding Np horizontal electric eigenmodes at the surface. All
other N - (N—Nj) components at gridpoints inside the conductor are disregarded.

When the superposition of eigenmodes is carried out, for better convergence it is favourable
to separate the magnetostatic part (w=0) of the field. Instead of (10), the synthesis reads
—iw . .

Bzz(ﬂfm w) = Bzz,oo (f|f0) + Bzz,O(f|£0) + Mom(w) Z m bzn(f)bzn (fo)a (24)

n n

1. .
where B, o(r|ry) = pom(w) Z " bon(r)bsn(r) denotes the separated magnetostatic field part.

n n
The expression B,, o (r|rg) + B..0(r|rg) is calculated analytically through superposition of the
VMD magnetostatic fields of the source and it’s mirror source, which is reflected at the boundary
to the perfectly conducting halfspace at depth z(n,+1).

Verification of code

In order to verify the accuracy of our eigenmode modelling, the responses of a simple model have
been compared to the semi-analytic layered half-space solution (see e.g. Ward and Hohmann
(1988), pp. 208). Here we consider a uniform half-space of 100 Qm. The earth is divided into
16 x 16 x 8 = 2048 cells using a regular 160m x 168 m x 25m grid. The number of unknown
electric eigenmodes is N =5640. Their eigenvalue spectrum ist is represented in Figure 5. Striking
characteristic of the spectrum is that about 1/3 of the eigenvalues is equal to zero, and their
respective eigenmodes do not contribute to the synthesis. It can be shown that this property
applies to arbitrary conductivity allocation to the cells and that the number of zero eigenvalues
is equivalent to the number of vertical electric eigenmodes e,, which is N, = (ng—1)(n,—1)n,.
Subsequently, only the positive eigenvalues need to be determined. To give an idea how the
eigenmodes look like, the modes at the earth’s surface associated with the six smallest positive
eigenvalues are illustrated in Figure 6. In this example, the eigenmodes show nice symmetry
reflecting the homogeneity of the subsurface. Adherence of the boundary conditions can be
observed for e, and e,. The vertical magnetic eigenmode calculated from the electric ones
sometimes vanishes for all surface gridpoints, as it occurs here for the eigenvalues with number
1801, 1803 and 1805. Again, those modes yield no contribution to the field synthesis but their
occurence could not yet be generalized.
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Figure 5: Eigenvalue spectrum of 100 2m half-space constisting of 2048 cells.
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Figure 6: Eigenmodes at the earth’s surface belonging to the six smallest positive eigenvalues of
100 Qm half-space constisting of 2048 cells.

For a VMD operating at a frequency of 8.6 kHz, the responses obtained using the 3D eigenmode
synthesis, as defined in equation (24), are shown in Figure 7. Transmitter and receiver are kept
at fixed distance (r=10m) and are moved along a line in z-direction, which is positioned at
y=84m at the earth’s surface. The real and imaginary parts of the modelled secondary field
show good agreement with the reference 1D semi-analytical solution. Similar good results are
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Figure 7: VMD fields of 3D eigenmode synthesis compared to 1D semi-analytical solution for a
100 Qm half-space.

accomplished performing the synthesis at height h above the surface. Though, due to the field
continuation, side effects propagate more to the interior of the grid.

The same set of eigenmodes has been used to simulate the VDM responses over a wide frequency
range from fp,;, =380 Hz to finee =192 kHz. The respective skin depths range from pj,q, =258 m
t0 Pmar =11.5m. For the latter, the request on the maximum cell dimension d to be d < p/3 is
fulfilled only in vertical direction. Nevertheless, the synthesis (Figure 8) yields acceptable results
for all frequencies.

Having presented the promising capabilities of the eigenmode approach we now need to contrast
the computational effort of the method. The storage requirements soon exceed the memory
available on today’s normal PCs or workstations. For the above treated grid, the 3840 non-zero
eigenmodes already claim 165 Mb for storage, additional twice the amount has to be reserved
to be able to determine the modes. On an ‘alphaserver’ (883 MHz), the execution time for
determination of all non-zero eigenmodes is 3.5 h, whereas the synthesis for five frequencies at
15 positions takes only a few seconds.

Optimization possibilities

The approximate eigenvalue problem solvers provided by ARPACK require N - O(K) + O(K?)
memory storage locations when K is the number of eigenvalues to be computed of the N-
dimensional matrix. Whereas N is predetermined by the employed grid, the number K may
be arbitrarily chosen to match the available memory. Therefore, one conceivable strategy to
overcome memory limitations is to sucessively calculate parts of the set of eigenmodes, each of
size K. Since the implemented Krylov method allows to calculate only eigenvalues from either
end of the spectrum, to acquire those eigenvalues from the interior of the spectrum a spec-
tral transformation is inevitable. The shift and invert spectral transformation mode solves the

147



19. Kolloquium Elektromagnetische Tiefenforschung, Burg Ludwigstein, 1.10.-5.10.2001, Hrsg.: A. H6rdt und J. B. Stoll

VMD 380.0 Hz — 192.0 kHz
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Figure 8: VMD fields for various frequencies, responses of 3D eigenmode synthesis compared to
1D semi-analytical solution over a 100 2m half-space.
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modified eigenvalue problem

1

(A—6I) " x=vx, where v = P

(25)
Hereof, the K largest eigenvalues vy are obtained and transformed back to eigenvalues of the

original problem using
1

Ap =60+ —, (26)
Vg
yielding the K smallest original eigenvalues which are larger than the shift 6. Through successivly
increasing the shift §, the determination of any desired portion of the spectrum can be accom-
plished, at least theoretically. Some precaution with this approach has to be taken regarding the
preservation of the orthogonality between all eigenmodes, which is essential for a successful field
synthesis.

In practice, to calculate the action of the shifted matrix inverse on a vector causes some
difficulties. For any positive shift § the system matrix becomes indefinite which restricts the
choice of an iterative solver, e.g. the well-known conjugate gradient technique cannot be applied.
We have tested several of the general iterative methods and preconditioners provided as templates
by Barrett et al. (1994) without satisfactory results. Especially designed for indefinite, but
symmetric systems are the algorithms SYMMLQ and MINRES. We have implemented SYMMLQ
(Paige and Saunders, 1975) as iterative solver and obtained acceptable convergence rates for
small positive shifts §. However, for shifts between the smallest and largest eigenvalue, the
iterative solver does not converge anymore (see Figure 9), if no preconditioning is applied. When
preconditioning indefinite systems, most of the standard techniques do not work: For example,
using SYMMLQ with simple Jacobi scaling as preconditioner increases the number of iterations
to more than twice the quantity needed without. Similar poor results yields the application
of SSOR or several variants of the incomplete Cholesky/LU decomposition preconditioner as
provided by Saad (1994).

Recently, we have implemented a preconditioner suggested by Gill et al. (1992), which is based
on a modification of the Bunch-Parlett factorization of a matrix A that somehow approximates

Convergence of SYMMLQ
matrix n= 5640 , nonzero elements nnz= 335464

eigenvalues  3.7147E+05 4.4542E+07

1000

100

number of iterations

1 s 1 s 1 s 1 L 1
10* 10° 10
shift 6 of matrix

(@]
(=]

Figure 9: Number of iterations needed by SYMMLQ depending on the shift § of the system
matrix A when no preconditioning is applied.
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A. The factorization is calculated using the sparse implementation provided in the Harwell code
MA27 (HSL, 2002). With the ‘exact’ Bunch-Parlett preconditioner, calculated from A=A,
SYMMLQ solves the system (A — §I )_1 y = z at at most three iterations, independently of the
value of the shift. But this procedure is less reasonable, since the work building the precondi-
tioner exceeds the work necessary to directly solve the system using the original Bunch-Parlett
factorization. One of our next tasks will be the search for a matrix with clever affinity to A,
yielding an elaborate preconditioner at affordable cost.

Another way to reduce the computational effort may be the application of an approximate
synthesis which is accomplished with only part of eigenmodes, namely those with smallest positive
eigenvalues. The sum over all eigenmodes in (24) can be decomposed in terms with different
powers of 1/Ay:

—iw —iw —w? iw?
;An(AnJriw) _;<)\% +)\n(>\%+w2)+>\%(>\%+wg)>- (27)
The first addend describes the frequency-proportional part of the field, which may possibly be
replaced by an expression calculated from an equivalent source current system in the conductor.
The remaining sum contains the inverse eigenvalues with dominant powers of three and higher.
A fast convergence of the sum is expected, where only the smallest positive eigenvalues and
their respective eigenmodes do contribute significantly to the field synthesis. The convergence
behaviour has to be investigated for various conductivity distributions, aiming at finding an
appropriate truncation criterion.

Concluding remarks

A 3D frequency-domain EM modelling code has been developed on the basis of free decay modes
in the conductor. Expressing the governing equations and boundary conditions in terms of
finite differences leads to a sparse real-symmetric system matrix of high dimension. The large
eigenvalue problem is solved using an implicitly restarted Lanczos algorithm in shift and invert
mode. As iterative solver the SYMMLQ algorithm has been employed since it was judged to be
one of the best available for matrix systems that are indefinite but symmetric.

The performance of the new modelling method is demonstrated for a simple half-space model
and modest sized grid. The complete set of non-zero 3D eigenmodes is used to obtain the EM
responses of the conductor for a broad frequency range. Comparison with the semi-analytic 1D
solution shows that our results are in acceptable to good agreement. One important attribute of
the method is that it yields the multi-frequency and multi-position responses in a straightforward
manner once the eigenmodes are known. At present, unfortunately this advantage is almost
nullifed by the computational work necessary to determine the eigenmodes.

We plan to increase the efficiency of the code by both reducing the quantity of necessary eigen-
modes as well as the effort to determine each mode. The latter may be achieved by implementing
an appropriate preconditioner for the shifted matrix, whereupon the modified Bunch-Parlett fac-
torization seems to be most auspicious so far.
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