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Abstract

Several versions of the magnetotelluric inversion for layered anisotropic conductors are presented. Basics of
the direct problem solution and evaluation of the parametric sensitivities for anisotropic layered models are sum-
marized. Standard linearized Occam algorithms are tested with various regularization strategies, both quadratic
and non-smooth, and numerical performance of the inverse procedures is discussed. An example of a global prob-
abilistic inference by the Markov chain Monte Carlo approach is presented, aiming at appraising the equivalencies
and ambiguities characteristic for the inversion in anisotropic structures.

1 Introduction

Recent progress in the geoelectrical induction studies has established the electrical anisotropy in deeper parts of the
Earth a real and significant factor of the Earth’s internal structure. Though arguments have been still going on as
regards possibilities to distinguish between effects of anisotropy and those produced by lateral conductivity changes
or local distortions, several well-grounded studies have proved the electrical anisotropy to be fully justified within
particular geological and tectonic settings (e.g., Mareschal et al., 1995; Eisel and Haak, 1999). Moreover, they also
have proved the electrical anisotropy to create a significant link between geoelectrical models and geodynamical
interpretations.

The interpretation value of electrically anisotropic Earth structures has induced an increased interest to new in-
terpretation methodologies for anisotropic conductors. As compared to isotropic settings, inversion for anisotropic
electrical conductivities in the Earth has to deal with substantially increased number of variables, with ambigui-
ties and equivalencies between the parameters, and also with the fact that the anisotropic Earth’s structures often
contradict the smoothness concept of most of the Occam-based inversion procedures.

First attempts to invert magnetotelluric (MT) data for 1-D anisotropic conductivities have been made by
Abramovici and Shoham (1977), and more recently by Regis and Rijo (1997, 2000) and Santos and Mendes-
Victor (1997). Abramovici and Shoham based their inversion procedure on the generalized inversion technique.
Regis and Rijo use the same inversion procedure, they propose, however, to employ additional prior information
from well logging and other geophysical and geological knowledge to impose constraints on the model. Santos and
Mendes-Victor use the simulated annealing algorithm and consider a layered earth containing dipping anisotropy.

In this paper we concentrate on a non-linear inversion of 1-D MT anisotropic data based on the conjugate gra-
dient and lagged diffusivity minimization. We discuss the effect of different stabilizing functionals, both quadratic
and non-smooth, for the regularization of the inverse problem. Finally, we compare the inversion results with those
inferred from a probabilistic Markov chain Monte Carlo method.

2 Model, Forward Solution, Parametric Sensitivities

2.1 Model of the 1-D MT Problem for Anisotropic Conductors

Throughout this paper, we will assume a simple Cagniard-Tichonov 1-D MT model extended to anisotropic lay-
ered media. The conductive structure (earth) consists of homogeneous horizontal layers with thicknesses h l,
l = 1, . . . , N . The stack of layers is underlain by a homogeneous conductive halfspace. The electrical conductivity
in each of the layers, as well as in the basement, is given by a conductivity tensor σ l, l = 1, . . . , N, N + 1. We
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assume that σ is a symmetric and positive definite tensor anywhere within the earth. The halfspace above the earth
is filled with perfectly insulating air, i.e. σ0 = 0.

The earth’s surface defines the xy plane of a cartesian coordinate system, the z axis is directed down into the
conductive medium. The electromagnetic field is excited by a primary electromagnetic plane wave that originates
from sources at z = −∞ and propagates perpendicularly towards the earth’s surface.

Within each layer, the conductivity tensor σ can be, due to its symmetry, diagonalized and expressed via three
principal conductivities, σ1, σ2, σ3, and a rotation matrix, which can be, in turn, decomposed into three elementary
Euler’s rotations, successively by angles αL, αD , and αS ,

σ =


 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


 = Rz(−αS)Rx(−αD)Rz(−αL)


 σ1 0 0

0 σ2 0
0 0 σ3


Rz(αL)Rx(αD)Rz(αS),

where Rx and Rz are elementary rotation matrices around the coordinate axis x and z, respectively. According to
their physical relation to the anisotropy, the angles αS , αD, αL can be identified with the anisotropy strike, dip,
and slant, respectively.

Considering the symmetry of the above MT model, i.e. ∂/∂x = ∂/∂y ≡ 0, Maxwell’s equations in each of
the homogeneous subdomains of the model for a frequency ω reduce to

∂Ex

∂z
= iωµ0Hy,

∂Hy

∂z
= −Jx = −σxxEx − σxyEy − σxzEz,

∂Ey

∂z
= −iωµ0Hx,

∂Hx

∂z
= Jy = σyxEx + σyyEy + σyzEz .

(2.1)

The last pair of governing field equations degenerates to

Hz = 0, Jz = σzxEx + σzyEy + σzzEz = 0, (2.2)

expressing simply the absence of a vertical magnetic field and of vertical electric currents anywhere in an anisotropic
layered medium.

Eliminating, e.g., the magnetic field components from (2.1), we easily arrive at a system of coupled second-order
differential equations for the electric field,

∂2Ex

∂z2
+ iωµ0(AxxEx + AxyEy) = 0,

∂2Ey

∂z2
+ iωµ0(AyxEx + AyyEy) = 0, (2.3)

where

Axx = σxx − σxzσzx

σzz
, Axy = σxy − σxzσzy

σzz
, Ayx = σyx − σyzσzx

σzz
, Ayy = σyy − σyzσzy

σzz
, (2.4)

with clearly Axy = Ayx for a symmetric conductivity tensor σ.
From (2.1) and the system (2.3) we can conclude that the MT field in a layered anisotropic medium depends

on the elements of the conductivity tensor through the aggregate conductivities A xx, Ayy , and Axy only. Whatever
the particular form of the conductivity tensor σ, the electromagnetic field does not change if the elements of the
2 × 2 matrix A remain unchanged. Consequently, without any additional information available, the MT field of
a plane wave does not allow us to reconstruct the full conductivity tensor in a 1-D medium. Only the elements of
A can be resolved, which thus represents an equivalent effective conductivity tensor attributed to the individual
layers of the model.

It can be easily shown that detA = detσ/σzz > 0. Consequently, A is a symmetric and positive definite
2 × 2 matrix, which can be again factorized in terms of its principal elements, say A 1 and A2, and an elementary
rotation, by an effective strike angle βS , around the z coordinate axis,(

Axx Axy

Ayx Ayy

)
=
(

cosβS − sinβS

sin βS cosβS

)(
A1 0
0 A2

)(
cosβS sin βS

− sinβS cosβS

)
,

which gives

Axx = A1 cos2 βS + A2 sin2 βS , Ayy = A1 sin2 βS + A2 cos2 βS , Axy = Ayx = (A1 − A2) sin βS cosβS .

Summarizing the above steps, we conclude that the 1-D MT problem for a generally anisotropic layered
medium can be always re-formulated as a simpler, but equivalent problem for an azimuthally (horizontally)
anisotropic structure with the horizontal conductivity tensor A defined by (2.4). Any changes in the full con-
ductivity tensor σ that do not affect the elements of A cannot be recognized by MT soundings with a plane wave
source field.
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2.2 Principles of the Forward Solution

In the past 30 years, the solution to the 1-D direct MT problem for anisotropic structures has been presented in
various forms by a number of authors (e.g., O’Brien and Morrison, 1967; Reddy and Rankin, 1971; Loewenthal
and Landisman, 1973; Abramovici, 1974; Dekker and Hastie, 1980). Therefore, we will only briefly summarize
the principal points of the direct solution here. For a detailed description of the problem, both theoretical and
algorithmic, we refer the reader to (Pek and Santos, 2002)

The system (2.3) has the form of coupled pendula equations. Seeking the general solution to equations (2.3)
in the form exp( ± kz), we easily find that there are always two solution modes in the anisotropic medium,
corresponding to two different wave numbers,

k2
1,2 = − iωµ0

2

[
Axx + Ayy ±

√
(Axx − Ayy)2 + 4AxyAyx

]
.

In terms of the principal effective conductivities, A1 and A2, these wave numbers are expressed as

k2
1,2 = − iωµ0

2
(A1 + A2 ± |A1 − A2|) = −iωµ0

{
max
min

}
{A1, A2} = −iωµ0A1,2,

the last identity being true only if A1 ≥ A2. This can be, however, always achieved by properly choosing the
effective strike βS . By changing βS by ± 90◦, we can simply swap the principal conductivities A1 and A2.

Thus, two pairs of downgoing and upgoing waves exist in a generally anisotropic layer, the first one, corre-
sponding to the wave number k1, slow, and the other one (k2) fast. A standard matrix propagation method can be
now used to propagate the fields between different depths within the model.

For a particular z within an l-th layer, the horizontal field components can be expressed in a matrix form,

Fl(z, ω) = Ml(z, ω)Dl, z ∈ (zl−1, zl), l = 1, . . . , N + 1, (2.5)

where FT = (ET
h ,HT

h ) = (Ex, Ey, Hx, Hy), and M is a 4 × 4 matrix containing the exponential terms of the
partial waves within the l-th layer, as well as scaling factors for the individual field components. The explicit
form of the matrix M can be found in (Pek and Santos, 2002). The vector D involves four arbitrary constants
which define the amplitudes of the individual partial waves within the layer considered. Within the homogeneous
basement, z > zN , only two of those constants which correspond to the downgoing wave modes can be non-zero
for energetic reasons.

The multiplicative constants in D can be determined by using the general continuity conditions on the layer
boundaries,

Fl(zl, ω) = Fl+1(zl, ω) ⇒ Dl = M−1
l (zl, ω)Ml+1(zl, ω)Dl+1, l = 0, . . . , N.

Consequently, the field within the l-th layer can be written in the form

Fl(z, ω) = Sl(zl − z, ω)
N∏

j=l+1

Sj(hj , ω)DN+1, z ∈ (zl−1, zl), (2.6)

where Sj(hj , ω) = Mj(zj−1, ω)M−1
j (zj , ω), and hj = zj − zj−1. Equation (2.6) contains only two arbitrary

constants from the homogeneous basement, which can be determined, e.g., by normalizing two of the four field
components on the earth’s surface.

Equation (2.6) allows us to recompute the electromagnetic field from the basement of the model through its
layers towards the earth’s surface. It represents the mathematical basis of the matrix propagation procedure for the
fields in a 1-D anisotropic layered medium (e.g., O’Brien and Morrison, 1967; Loewenthal and Landisman, 1973).

The 4 × 4 matrices S(h, ω) in (2.6) can be computed directly from the corresponding matrices M, and can be
factorized into four logical blocks,

S(h, ω) =

(
SEE(h, ω) SEH(h, ω)

SHE(h, ω) SHH(h, ω)

)
=

(
R(−βS)SEE

0 (h, ω)R(βS) R(−βS)SEH
0 (h, ω)R(βS)

R(−βS)SHE
0 (h, ω)R(βS) R(−βS)SHH

0 (h, ω)R(βS)

)
,

where R(β) is a rotation in the (x, y)-plane by β, and the zero-indexed S-blocks are given by

SEE
0 (h, ω) =

(
coshk1h 0

0 cosh k2h

)
, SEH

0 (h, ω) =
(

0 ζ1 sinh k1h
−ζ2 sinh k2h 0

)
,

SHE
0 (h, ω) =

(
0 −ζ−1

2 sinhk2h
ζ−1
1 sinh k1h 0

)
, SHH

0 (h, ω) =
(

cosh k2h 0
0 coshk1h

)
,
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where ζ1,2 = −iωµ0/k1,2 =
√
−iωµ0/A1,2 = k1,2/A1,2 are elementary half-space impedances for the electrical

parameters of the current anisotropic layer.
The matrix expression (2.6) can be used to derive generalized recurrent formulae for recomputing the MT im-

pedances between the boundaries of the anisotropic layers. Considering in particular the top and the bottom of the
l-th layer, z = zl−1 and z = zl respectively, we easily have a relation between the respective horizontal fields,
Fl−1(zl, ω) = Sl(hl, ω)Fl(zl, ω). After introducing the impedance tensor by Eh(z, ω) = Z(z, ω)Hh(z, ω), we
further obtain a system of matrix equations

Zl−1 Hh,l−1 = (SEE
l Zl + SEH

l )Hh,l, Hh,l−1 = (SHE
l Zl + SHH

l )Hh,l,

and, consequently,
Zl−1 = (SEE

l Zl + SEH
l )(SHE

l Zl + SHH
l )−1, (2.7)

where Zl ≡ Z(zl, ω) and Hh,l ≡ Hh(zl, ω). When used recurrently, equation (2.7) can be used to recompute the
impedance tensor from the top of the homogeneous basement up to the earth’s surface. The starting tensor on the
top of the homogeneous anisotropic halfspace is given by

ZN = −1
2

(
−(ζ1 − ζ2) sin 2βS (ζ1 + ζ2) + (ζ1 − ζ2) cos 2βS

−(ζ1 + ζ2) + (ζ1 − ζ2) cos 2βS (ζ1 − ζ2) sin 2βS

)
,

with ζ1, ζ2, βS being now the halfspace parameters, i.e. ζ1 ≡ ζ1,N+1, ζ2 ≡ ζ2,N+1, and βS ≡ βS,N+1.
Equation (2.7) is a basis for the impedance propagation method in a 1-D anisotropic layered conductor (e.g.,

Abramovici, 1974; Dekker and Hastie, 1980). As in general impedances behave more regularly that the fields
itself, the impedance propagation method is preferred in the numerical evaluations of the impedance tensor.

2.3 Parametric Sensitivities

Parametric sensitivities of the surface impedances with respect to the parameters of the individual layers are given
by partial derivatives ∂Z(z0, ω)/∂pk, where pk is one of the model parameters of the k-th layer. In MT inverse ap-
plications for anisotropic 1-D conductivities/resistivities without any specific prior information on the anisotropy,
it is reasonable to choose pk ∈ {A1,k, A2,k, βS,k, hk}, which is a foursome of independent parameters that ex-
haustively characterize any anisotropic layer within a stratified medium.

The parametric sensitivities of the MT impedance for an anisotropic layered halfspace can be computed directly
by differentiating the formulae (2.7) with respect to p k. The computations simplify considerably owing to the
following two facts: (i) the matrix Sl, and consequently all its sub-blocks depend solely on the parameters of
the current, i.e. the l-th layer, (ii) the MT impedance at the bottom of the l-th layer, Z l, does not depend on any
parameter of any layer above that boundary.

From (2.7), we have generally

∂Zl−1

∂pk
(SHE

l Zl + SHH
l ) + Zl−1

(
∂SHE

l

∂pk
Zl + SHE

l

∂Zl

∂pk
+

∂SHH
l

∂pk

)
=

∂SEE
l

∂pk
Zl + SEE

l

∂Zl

∂pk
+

∂SEH
l

∂pk
.

By virtue of the above properties, we obtain, after some simple algebra,

∂Zl−1

∂pk
=




0 if k < l,

(RDE
l Zl + RDH

l )R−1
l if k = l,

RE
l

∂Zl

∂pk
R−1

l if k > l,

(2.8)

with the following auxiliary matrices introduced,

Rl = SHE
l Zl+SHH

l , RE
l = SEE

l −Zl−1 SHE
l , RDE

l =
∂SEE

l

∂pk
−Zl−1

∂SHE
l

∂pk
, RDH

l =
∂SEH

l

∂pk
−Zl−1

∂SHH
l

∂pk
.

Now, by using (2.8) recurrently, we have explicitly

∂Zl−1

∂pk
=


k−1∏

j=l

RE
j


 (RDE

k Zk + RDH
k )


 k∏

j=l

Rj



−1

. (2.9)

Formulae (2.9) can be easily integrated into the algorithm for the direct problem solution for the impedances Z
(Pek and Santos, 2002). Proceeding from the top of the homogeneous basement through the stack of the layers
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towards the earth’s surface, then for a particular, say l-th, layer, we first propagate the impedance tensor from its
bottom, Zl, to its top, Zl−1, by using equation (2.7). Next, we compute the auxiliary matrices R E

l , RDE
l , and

RDH
l from the now known impedances Z l and Zl−1, and from the sub-matrices of Sl and their derivatives with

respect to pl, the calculation of which is an elementary procedure. Then, the bottom formula in (2.8) is used to
propagate all the derivatives from the deeper layers through the current layer to its top, while the middle formula
in (2.8) is applied to initiate the derivatives with respect to the parameters of the current layer. In this way, we
propagate both the impedance tensor and all its parametric derivatives up to the earth’s surface.

Parametric sensitivities of an anisotropic layered model are a suitable tool to analyze the influence of the model
parameters on the surface impedances. The sensitivity analysis can provide information as to the possibility to
resolve particular features of the model from MT data. In Fig. 1 we demonstrate the parametric sensitivities for a
specific model which we use in the following sections as a test model for assessing the performance of the inversion
experiments. The model consists of five layers, two of which are anisotropic with different anisotropy strikes. The
parameters of the model are given in the following table:

Layer h (km) βS (deg) �min (Ωm) �max (Ωm) Smin (Siemens) Smax (Siemens)
1 3 1000 3
2 7 −50 3 300 23.3 2333.3
3 60 1000 60
4 130 20 30 300 433.3 4333.3
5 ∞ 200

The difference between the directions of the preferred conductivity of the two anisotropic layers is 70 deg, and the
conductances are chosen so that the deep anisotropic layer can be reliably sensed in the direction of its anisotropy
strike. There are altogether 19 parameters in the model if all layers are considered anisotropic.

The gray scale maps in Fig. 1 show modules of the real and imaginary parts of the following sensitivity func-
tions for each impedance element and for each layer,

s(ln Al) =
Al

|Z|
∂Z

∂Al
=

1
|Z|

∂Z

∂ ln Al
, l = 1, 2, s(βS) =

1
|Z|

∂Z

∂βS
, s(ln h) =

h

|Z|
∂Z

∂h
=

1
|Z|

∂Z

∂ ln h
, (2.10)

which express the relative change of the particular impedance element with respect to the respective parameter,
or to its logarithm in case of conductivities and thicknesses. The relative sensitivities defined in this way lead to
simple sensitivity formulas for the standard MT functions, i.e., apparent resistivities � a and impedance phases ϕ,

1
�a

∂�a

∂p
=

∂ ln �a

∂p
= 2 Re

[
s(p)

Z∗

|Z|
]

,
∂ϕ

∂p
= Im

[
s(p)

Z∗

|Z|
]

,

where asterisk is for complex conjugate. The normalized impedances, Z/|Z|, displayed in the top panels of Fig. 1
along with the model section, represent weighting factors for the conversion of the impedance sensitivities to the
sensitivities of the MT functions.

3 Inversion

3.1 Target Function

Our approach to the MT inversion for anisotropic layered models is based on the standard Occam idea (e.g.,
Constable et al., 1987) of minimizing the structure with the data fit used as a constraint in the minimization
problem. The parametric functional to be minimized can be written in a general form

Φ(m, λ) = Φstruct(m,mprior) + λ−1Φdat(m) → min, with Φdat(m) =
∥∥WD[dmod(m) − dobs]

∥∥2
, (3.1)

where m is the vector of the model parameters, mprior contains prior estimates of the the model parameters, dobs

are the measured data, WD the covariance matrix of the experimental data, and dmod(m) is the forward solution
of the MT problem for the model parameters m. The parameter λ is a regularization parameter which specifies the
weight given to the structural constraint Φstruct(m,mprior) at the expense of the data fit Φdat(m).

In our experiments, the parametrization of the model is based on dividing the 1-D section into a logarithmically
uniform system of homogeneous layers between two depth limits, which are derived from estimates of the mini-
mum and maximum apparent penetration depths of the electromagnetic field in the medium. Then, the parameters
of the model (vector m) are the logarithms of the minimum and maximum horizontal resistivities and the direction
of the minimum resistivity (anisotropy strike) within each of the layers. We have proved in Section 2.1 that these
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Figure 1: Modules of the normalized sensitivities (2.10) for a 5-layer anisotropic model described in the text. Top
panel, left—Model section with the maximum (full line) and minimum (dashed line) resistivities and the anisotropy
strikes within the individual layers. Top panel, middle—Real and imaginary parts of the normalized impedances
Z/|Z| within the period range of 10−2 to 104 s. Top panel, right—Polar impedance diagrams for selected periods.
Bottom panels—Gray scale plots of the absolute values of the normalized parametric sensitivities (2.10) for the
real and imaginary parts of the individual impedance elements as functions of period. Due to the symmetry
Zyy = −Zxx, the sensitivity plot for Zyy is identical with that for Zxx. All layers are considered anisotropic for
the sensitivity evaluations. The anisotropy strike in isotropic layers is 0 deg by default here.

parameters describe the anisotropic layer completely for MT considerations. For a fine enough sampling of the
halfspace, the layer geometry (layer thicknesses) need not be included into the set of the variable parameters.

In resolving the parameters of an anisotropic conductor, the secondary (diagonal) impedances play a crucial
role. Therefore, the experimetal data vector dobs is formed of the impedance elements rather than of the usual
apparent resistivity and phase data.

The aim of introducing the structural penalty Φ struct(m,mprior) is to prevent the model from showing unnec-
essary structural features that result from overfitting the experimental data, i.e., from fitting the noise component in
the observations. The minimum norm (Tikhonov and Arsenin, 1977), minimum roughness and minimum curvature
(Constable et al., 1987) are the most popular structural penalties used in geoelectrical inversions, both due to their
interpretation efficiency and numerical straightforwardness.

Anisotropic geoelectrical structures are, however, often connected with spatially localized geological phenom-
ena, such as shear zones, fractured complexes, etc., which do not conform the idea of a gradual, diffuse transition to
the neighbouring units. Moreover, experiments with 2-D anisotropic models have shown that interactions of largely
anisotropic domains with different anisotropy directions can result in heavy distortions of the MT impedances
(Pek and Verner, 1997). It is, therefore, desirable to limit both the spatial extent of the anisotropic domains and
the anisotropy variations within those domains by employing modified regularization strategies which give prefer-
ence to the ‘non-smooth’ structural features. In this study, we have tested several regularization approaches, both
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Penalty Theoretical formula Numerical representation

Least-squares norm1
∫∞
0

[m(z) − mprior(z)]2 dz
∑

i(mi − mprior
i )2

Roughness2
∫∞
0 [∇m(z)]2 dz

∑
i(mi − mi−1)2

Total variation3
∫∞
0

|∇m(z)| dz
∑

i

√
(mi − mi−1)2 + β2, β → 0

Minimum support4
∫∞
0

[m(z)−mprior(z)]2

[m(z)−mprior(z)]2+β2 dz, β → 0
∑

i
(mi−mprior

i )2

(mi−mprior
i )2+β2 , β → 0

Minimum gradient support5
∫∞
0

[∇m(z)]2

[∇m(z)]2+β2 dz, β → 0
∑

i
(mi−mi−1)2

(mi−mi−1)2+β2 , β → 0

Table 1: Summary of the regularization functionals used in our inversion tests for anisotropic layered conductivi-
ties. 1(Tikhonov and Arsenin, 1977) Minimizes the LS norm of the deviation of the model from a prior distribution.
2(Constable et al., 1987) Minimizes the roughness of the parameters in the LS sense. Prefers slow variations, tends
to oversmooth the solution and suppress any sharp changes in the solution. 3(Rudin et al., 1992) Minimizes the
total variation of the parameter. It is indifferent to the size of the parameter jumps, and can preserve sharp edges
in the solution. It is non-differentiable at points with zero gradient, hence introduction of a small stabilizing β
is necessary. 4(Portniaguine and Zhdanov, 1999) For a sufficiently small stabilizing β, it penalizes any deviation
from mprior(z) by the same amount, independently of the size of the deviation. 5(Portniaguine and Zhdanov,
1999) For a sufficiently small stabilizing β, it penalizes any sharp change in the solution, independently of the size
of the jump. Tends to produce models with a minimum number of layers.

quadratic and non-quadratic, which have recently been used in other geophysical interpretations (Portniaguine and
Zhdanov, 1999). A summary of the regularization functionals used in our experiments is given in Tab. 1. We refer
the reader to (Portniaguine and Zhdanov, 1999) for the mathematical background and the proof that the considered
functionals are stabilizers in sense of the Tikhonov regularization theory.

One of the serious questions of the regularized inversion (3.1) is a particular choice of the regularization pa-
rameter λ. One of the popular approaches in this respect is the L-curve criterion (Hansen, 1992). The L-curve
is a plot of the norm of the regularized solutions Φ struct(m,mprior) versus the norm of the residuals Φdat(m).
This dependence has often an L-shaped form which reflects the heuristics that for large λ’s the residual increases
without reducing the structural norm of the solution much, while for small λ’s the norm of the solutions increases
rapidly without much decrease in the data residual. Thus, the best regularization parameter should lie on the corner
of the L-curve. Though the L-curve approach is not flawless (see, e.g., Engel and Grever, 1994), we have used it
in our experiments to estimate the quasi-optimal regularization parameter λ.

3.2 Local Minimization

Commonly, the Newton-type methods are employed for minimizing the target function (3.1), particularly if quadra-
tic regularization is implemented (e.g., Constable et al., 1987). The use of non-quadratic regularization functionals
can, however, result in serious non-linearities of the target function and its derivatives, and may degrade, or even
completely corrupt, the convergence of the Newton-type minimization methods.

Portniaguine and Zhdanov (1999) propose to minimize (3.1) by using the conjugate gradient reweighted opti-
mization with line search. They minimize the target function of a particular form

Φ(m, λ) =
∥∥WM (m)(m − mprior)

∥∥2
+ λ−1

∥∥WD[dmod(m) − dobs]
∥∥2 → min, (3.2)

where the specific structural norm given by the first term on the r.h.s. of (3.2) is shown to be compatible with all the
regularization functions in Tab. 1. The minimization process in the iteration step (k + 1) is based on a line search
for the minimum of Φ[m(k) − τg(m(k))] with respect to τ , where g(m(k)) is the conjugate gradient direction,

g(m(k)) = g0(m(k)) + γkg(m(k−1)), with γk = ‖g0(m(k))‖2/‖g0(m(k−1))‖2,

and g0(m(k)) is the gradient of (3.2) in the k-th step, with the generally non-linear matrix W M (m) fixed with the
arguments of the current iteration step, i.e., m = m (k),

g0(m(k)) = 2WT
M (m(k))WM (m(k)) (m(k) − mprior) + 2λ−1[Smod(m(k))]T WT

DWD[dmod(m(k)) − dobs],

where Smod(m) = ∇M [dmod(m)]T is a matrix of the Frechet (parametric) derivatives of the forward solution.
The structural weighting matrix WM (m) is updated on every iteration, which clarifies the reweighting character
of the algorithm. The convergence of the conjugate gradient optimization has been found reliable in practical tests,
with typically several tens of iteration steps required to converge to the solution for reasonable models.
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Another minimization procedure we have tested here is an analogy to the lagged diffusivity method which
had been earlier proposed for problems in the image processing with the total variation regularization (Vogel
and Oman, 1998). Let us express the parametric gradient of the structure norm in the form ∇ MΦstruct(m) =
2WMD(m)(m − mprior), which can be easily verified for all structure norms in Tab. 1. Then, the necessary
condition for the target function (3.1) to reach a minimum is

∇MΦ(m, λ) = 2 λ−1[Smod(m)]T WT
D WD [dmod(m) − dobs] + 2WMD(m) (m − mprior) = 0, (3.3)

which is similar to g0(m) above, except that now the matrix WMD(m) corresponds to the exact gradient of
the respective structure norm. The lagged diffusivity method consists in applying the standard Gauss-Newton
optimization procedure to (3.3) with the weighting matrix WMD kept fixed with the parameters of the current
iteration step. Thus, we obtain a modified Gauss-Newton iteration process

m(k+1) = m(k) −
{
[Smod(m(k))]T WT

D WD Smod(m(k)) + λWMD(m(k))
}−1

×
{

[Smod(m(k))]T WT
D WD [dmod(m(k)) − dobs] + λWMD(m(k)) (m(k) − mprior)

}
. (3.4)

The convergence of the process (3.4) is generally not guaranteed for non-linear problems, and we have encountered
situations in numerical tests when the parameter correction given by (3.4) resulted in increase of the target function
between successive iterations. In such a case, the correction step was divided by a factor of 2 until a decrease of
the target function was achieved. With this modification, the algorithm converged reliably, with typically less than
fifty iteration steps required to reach the solution.

In Fig. 2 we demonstrate the performance of the inverse solution for a synthetic data set generated from the
five-layer model given in Fig. 1. For the inversion tests, the impedance values were contamined with two per cent
Gaussian noise. The inverse solution was regularized by employing the standard roughness penalty. Fig. 2a shows
the corresponding L-curve for various regularization parameters λ from 1 up to 30000. The values of λ in the
‘knee’ region of the L-curve are between about 300 and 1000. The plots in Figs. 2d, e, f show the resulting models
for λ = 3 (overfitting), λ = 300 (corner of the L-curve), and λ = 3000 (oversmoothing), respectively.

Considering the model in Fig. 2e a solution to the regularized inverse problem, we see that the two anisotropic
conductors of the original synthetic model are correctly recovered as to their depth range (3 to 10 km, and 70 to
200 km), and roughly also as regards the resistivity values (3 and 300 Ωm for the shallow layer, and 30 and 300 Ωm
for the deep conductor). The shallow strike (−50◦) is recovered correctly as well, while the interpreted deep strike
(about 30◦) is slightly greater than the true value (20◦). The most serious discrepancy between the original model
and the inverse solution is excessive anisotropy, of more than one order of magnitude in terms of the resistivity
ratio, between the two anisotropic conductors, which results from a poor resolution of the MT data with respect to
the resistive layer (1000 Ωm) within the range of 10 to 70 km.

In the following experiments we have tried to suppress the redundant anisotropy in the structure by imposing
an additional constraint on the resistivity anisotropy within the model. The particular penalty function has been
chosen Φanis =

∫∞
0 | log[�max(z)/�min(z)] | dz with a weighting factor wa. In the first step, we have fixed the

weight of the roughness penalty at λ = 300, and changed only the weight of the anisotropy penalty w a so that
the product λwa ∈ (1, 30000). In this way we could analyze how much of the anisotropy can be removed from
the model in Fig. 2e without affecting the data fit much. The corresponding L-curve is displayed in Fig. 2b. The
curve shows that for λwa greater than about 200, the residual norm increases rapidly, whereas for those values
below 100 the fit is practically the same as for the model without the anisotropy penalty applied. The inverse
solution for λwa = 100 is shown in Fig. 2g.

A more objective approach is to employ both the structure and anisotropy penalty simultaneously via a multi-
objective minimization procedure applied to the function

Φ(m, λ, wa) = Φstruct(m,mprior) + waΦanis(m) + λ−1Φdat(m) → min. (3.5)

For this purpose, we plotted a generalized L-surface in Fig. 2c which shows the data residuals as a function of both
the roughness and anisotropy penalty weights. Two models corresponding to the weights from the ‘knee’ region
of the L-surface are presented in Figs. 2h, i, and show a relatively successful recovery of the anisotropic domains.
As the periods used cover the section within the depth range of roughly 1.5 to 200 km, the excessive anisotropies
in the very shallow and very deep parts of the model have no significance. Similarly, rapid jumps in the strike are
a consequence of local swaps between the maximum and minimum resistivities within practically isotropic layers
of the models, and have no significance.

Figs. 3 and 4 show results of analogous experiments with, respectively, the total variation and gradient support
penalties. The stabilizing parameter β was chosen 0.1 in both those cases. Both approaches show a better ‘de-
smoothing’ performance as compared with the results in Fig. 2.
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Figure 2: a—L-curve for the inversion of the synthetic data from Section 2.3, Fig. 1, with the roughness penalty
employed. The models corresponding to the points d, e, and f are shown in the respective model panels to the right,
which are labeled with the particular values of the regularization weights (RG, λ). b—L-curve for a fixed roughness
and a variable anisotropy penalty weight. The model corresponding to the point g is shown in the respective model
panel. c—L-surface for variable roughness and anisotropy penalty weights. The (λ, λw a) points are posted on
the plot and classified by shape according to the log of the corresponding data misfit (full circles < 3.8, empty
circles 3.8− 4.0, big crosses 4.0− 4.5, small crosses > 4.5). Two models from the ‘knee’ region of the L-surface
are shown as models h and i in the model panels above.

The developed algorithm has been used to practical data from MT experiments in southern Portugal, in the
transition from the Southern Portuguese Zone to the Ossa Morena Zone. For the geophysical context of these MT
data, as well as a discussion of the possible sources of the anisotropy, see (Santos et al., 1999). Here, on an example
of one site from the above experiment, we will only demonstrate some aspects of the anisotropic inversion with
practical data.

First, experimental data rarely meet exactly the basic 1-D anisotropy condition, Z xx = −Zyy (see, e.g.,
Abramovici, 1974; Kováčiková and Pek, 2002). The secondary impedances are generally affected by static dis-
tortions, lateral inhomogeneities, and, last but not least, they are more susceptible to noise corruption due to their
small magnitudes. Fig. 5 shows the experimental data, the L-surface for the total variation and anisotropy penalties,
as well as three representative models, a, b, and c, from the ‘knee’ region of the L-surface, ordered according to in-
creasing/decreasing total variation/anisotropy. The inversion was carried out with both secondary impedances Z xx

and Zyy considered in the target function, which necessarily produced models with secondary impedances fitting
some average of the real secondary curves (see the full lines in the top panels of Fig. 5). Considering only one
of the experimental secondary impedances, and using its mirror image for the other one, the interpretation may
change, as illustrated by models in Fig. 5d (only Zxx used, fit to the data shown by a dashed line in the top panels)
and 5e (only Zyy used, fit by a dotted line in the top panels). In this particular case, the main difference is observed
in a largely anisotropic domain at about 10 km. According to the Z xx data, this layer is situated in the lower crust,
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Figure 3: L-surface and a representative inverse model for the synthetic test data from Section 2.3. A multi-
objective regularization with a total variation penalty and the minimum l1-norm anisotropy is applied.

Figure 4: L-surface and a representative inverse model for the synthetic test data from Section 2.3. A multi-
objective regularization with a gradient support penalty and the minimum l1-norm anisotropy is applied.

between roughly 10 and 20 km, is characterized by the minimum resistivity of about 2 Ωm and strike close to
±90◦. From the Zyy data, the anisotropic conductor is shallower, situated between about 7 and 10 km, with an
extremely low minimum resistivity of less than 1 Ωm and the strike close to −60 ◦.

Another effect of the anisotropic inversion is a manifestation of the anisotropy ‘oversmoothing’. The differ-
ences in the models in Figs. 5a, b, c demonstrate that, though the smoothing is active in the inverse process, the
anisotropy penalty used in (3.5) tends to produce largely anisotropic separated thin sheets if w a is too large, and,
thus, to add excessive structure to the model.

3.3 Global Optimization: An Example

Besides the local optimization techniques described in the preceding section, we carried out additional inversion
experiments with the global optimization procedures, in particular the controlled random search (Martinez, 1988)
and Markov chain Monte Carlo (MCMC) method (e.g., Neal, 1993). We only show here for comparison one result
obtained from the latter procedure which can help in qualitatively assessing the significance of the inversion results
from the previous experiments.

The MCMC methods represent a class of statistical inference methods that allow us to draw, in a computation-
ally feasible way, samples from extremely complex probability distributions, and to estimate moments of functions
under these distributions. In application to the inverse problems, the MCMC is used to estimate the posterior distri-
bution of the unknown parameters conditioned on the observed data. From the posterior density, various estimates
for the parameter distribution can be calculated as well as a posteriori uncertainties. A flexible formulation of the
priors makes it possible to incorporate structure penalties of various character into the inference process.

As we have, for our anisotropic problem, almost exactly repeated the MCMC procedure proposed for a 1-D
MT inversion by Grandis et al. (1999), we will not go into further methodological details here. In Fig. 6, we
present an interpretation of the synthetic data set from Section 2.3, which we have also used for testing in the
previous section. The gray shade plots show the marginal probability distributions for the maximum and minimum
resistivities and for the anisotropy strike within individual layers of the model; the original true model is displayed
as well for reference. A roughness penalty has been used to modify the prior distribution, with a regularization
weight λ = 3, which corresponds to only a weak smoothing of the parameters.

The plots clearly indicate that all parameters of the shallow anisotropic layer are well resolved, especially in its
upper part between 3 and 6 km. From the parameters of the deep anisotropic layer, only the minimum resistivity
is well resolved at depths of about 80 to 120 km. The distribution function of the maximum resistivity and that of
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Figure 5: Inversion of practical MT data from a site situated in the transition from the South Portuguese zone
to the Ossa Morena zone in southern Portugal. The solution is regularized by using the total variation and the
l1-norm anisotropy penalties. The top panels show the experimental apparent resistivities and phases (diamonds)
and the corresponding model curves for models in the subsequent panels (lines). The central right panel shows the
L-surface for the penalties used. Models corresponding to the points a, b, and c are displayed in the respective
panels to the left. Models d and e correspond to inversions in which only one secondary impedance was used, Z xx

for d (fit shown by a dashed line in the top plots) and Zyy for e (dotted line in the top plots).

Figure 6: Inversion of the synthetic
data from Section 2.3 by the MCMC
method with the roughness penalty em-
ployed. The regularization parameter
was 3, corresponding to weak smooth-
ing. The gray shading visualizes a pos-
teriori marginal conditional probability
densities for the individual model pa-
rameters. The empty lines correspond
to the true parameters of the underlying
synthetic model.

the anisotropy strike of the deep layer show broad flat maxima around their true values, which is consistent with
the pattern of the corresponding parametric sensitivities in Fig. 1.

Here, we have demonstrated the results of the MCMC inversion as a kind of postscript only to the preceding
sections. It has to be emphasized, however, that this method is a stand-alone inference procedure with enormous
potential in the area of geophysical inverse problems.
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4 Conclusion

MT inversion for anisotropic conductivities bears some specific features as compared to isotropic models. In this
contribution, we have presented a complete algorithm for a 1-D MT inversion for anisotropic layered conductors.
Various regularization approaches, both quadratic and non-smooth, have been tested. The minimization of the
non-linear target function is based on either the conjugate gradient reweighted optimization or on the analogy to
the lagged diffusivity iterative solution. Both methods perform well with non-smooth regularizators, the former
being more reliable as to the convergence, but slower than the lagged diffusivity method. The L-curve criterion
allows us to objectivize the selection of optimal regularization weights, though, especially in the version for the
multi-criterion regularization, the choice of the regularization parameters still depends on subjective views. The
probabilistic inferring could only be demonstrated by one single example of the MCMC inversion, but the potential
of this approach is rather high for anisotropic interpretations, where ambiguities and large sensitivity contrasts
between different parameters largely affect the inversion procedures.
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